Jane C. Munday
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jane C. Munday.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Nicola Baker; Lucy Glover; Jane C. Munday; David Aguinaga Andrés; Michael P. Barrett; Harry P. de Koning; David Horn
African trypanosomes cause sleeping sickness in humans, a disease that is typically fatal without chemotherapy. Unfortunately, drug resistance is common and melarsoprol-resistant trypanosomes often display cross-resistance to pentamidine. Although melarsoprol/pentamidine cross-resistance (MPXR) has been an area of intense interest for several decades, our understanding of the underlying mechanisms remains incomplete. Recently, a locus encoding two closely related aquaglyceroporins, AQP2 and AQP3, was linked to MPXR in a high-throughput loss-of-function screen. Here, we show that AQP2 has an unconventional “selectivity filter.” AQP2-specific gene knockout generated MPXR trypanosomes but did not affect resistance to a lipophilic arsenical, whereas recombinant AQP2 reversed MPXR in cells lacking native AQP2 and AQP3. AQP2 was also shown to be disrupted in a laboratory-selected MPXR strain. Both AQP2 and AQP3 gained access to the surface plasma membrane in insect life-cycle–stage trypanosomes but, remarkably, AQP2 was specifically restricted to the flagellar pocket in the bloodstream stage. We conclude that the unconventional aquaglyceroporin, AQP2, renders cells sensitive to both melarsoprol and pentamidine and that loss of AQP2 function could explain cases of innate and acquired MPXR.
Journal of Antimicrobial Chemotherapy | 2014
Jane C. Munday; Anthonius A. Eze; Nicola Baker; Lucy Glover; Caroline Clucas; David Aguinaga Andrés; Manal J. Natto; Ibrahim A. Teka; Jennifer McDonald; Rebecca S. Lee; Fabrice E. Graf; Philipp Ludin; Richard Burchmore; C. Michael R. Turner; Andy Tait; Annette MacLeod; Pascal Mäser; Michael P. Barrett; David Horn; Harry P. de Koning
Objectives Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. Methods The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. Results All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. Conclusions TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter.
Molecular and Biochemical Parasitology | 2011
Jane C. Munday; Karen McLuskey; Elaine Brown; Graham H. Coombs; Jeremy C. Mottram
Oligopeptidase B is a clan SC, family S9 serine peptidase found in gram positive bacteria, plants and trypanosomatids. Evidence suggests it is a virulence factor and thus therapeutic target in both Trypanosoma cruzi and T. brucei, but little is known about its function in Leishmania. In this study L. major OPB-deficient mutants (Δopb) were created. These grew normally as promastigotes, had a small deficiency in their ability to undergo differentiation to metacyclic promastigotes, were significantly less able to infect and survive within macrophages in vitro, but were virulent to mice. These data suggest that L. major OPB itself is not an important virulence factor, indicating functional differences between trypanosomes and Leishmania in their interaction with the mammalian host. The possibility that an OPB-like enzyme (designated OPB2) in L. major might compensate for the loss of OPB in Δopb was investigated via by mapping its sequence onto the 1.6Å structure of L. major OPB. This suggested that the residues involved in the S1 and S2 subsites of OPB2 are identical to OPB and hence the substrate specificity would be similar. Consequently there may be redundancy between the two enzymes.
Molecular Pharmacology | 2011
Ibrahim A. Teka; Anne J. N. Kazibwe; Nasser El-Sabbagh; Mohammed I. Al-Salabi; Christopher P. Ward; Anthonius A. Eze; Jane C. Munday; Pascal Mäser; Enock Matovu; Michael P. Barrett; Harry P. de Koning
African trypanosomiasis is a disease of humans and livestock in many areas south of the Sahara. Resistance to the few existing drugs is a major impediment to the control of these diseases, and we investigated how resistance to the main veterinary drug diminazene aceturate correlates with changes in drug transport in resistant strains. The strain tbat1(−/−), lacking the TbAT1/P2 aminopurine transporter implicated previously in diminazene transport, was adapted to higher levels of diminazene resistance. The resulting cell line was designated ABR and was highly cross-resistant to other diamidines and moderately resistant to cymelarsan. Procyclic trypanosomes were shown to be a convenient model to study diamidine uptake in Trypanosoma brucei brucei given the lack of TbAT1/P2 and a 10-fold higher activity of the high-affinity pentamidine transporter (HAPT1). Diminazene could be transported by HAPT1 in procyclic trypanosomes. This drug transport activity was lacking in the ABR line, as reported previously for the pentamidine-adapted line B48. The Km for diminazene transport in bloodstream tbat1(−/−) trypanosomes was consistent with uptake by HAPT1. Diminazene transport in ABR and B48 cells was reduced compared with tbat1(−/−), but their resistance phenotype was different: B48 displayed higher levels of resistance to pentamidine and the melaminophenyl arsenicals, whereas ABR displayed higher resistance to diminazene. These results establish a loss of HAPT1 function as a contributing factor to diminazene resistance but equally demonstrate for the first time that adaptations other than those determining the initial rates of drug uptake contribute to diamidine and arsenical resistance in African trypanosomes.
Antimicrobial Agents and Chemotherapy | 2013
Matthew K. Gould; Sabine Bachmaier; Juma A. M. Ali; Sam Alsford; Daniel N. A. Tagoe; Jane C. Munday; Achim Schnaufer; David Horn; Michael Boshart; Harry P. de Koning
ABSTRACT One of the most promising new targets for trypanocidal drugs to emerge in recent years is the cyclic AMP (cAMP) phosphodiesterase (PDE) activity encoded by TbrPDEB1 and TbrPDEB2. These genes were genetically confirmed as essential, and a high-affinity inhibitor, CpdA, displays potent antitrypanosomal activity. To identify effectors of the elevated cAMP levels resulting from CpdA action and, consequently, potential sites for adaptations giving resistance to PDE inhibitors, resistance to the drug was induced. Selection of mutagenized trypanosomes resulted in resistance to CpdA as well as cross-resistance to membrane-permeable cAMP analogues but not to currently used trypanocidal drugs. Resistance was not due to changes in cAMP levels or in PDEB genes. A second approach, a genome-wide RNA interference (RNAi) library screen, returned four genes giving resistance to CpdA upon knockdown. Validation by independent RNAi strategies confirmed resistance to CpdA and suggested a role for the identified cAMP Response Proteins (CARPs) in cAMP action. CARP1 is unique to kinetoplastid parasites and has predicted cyclic nucleotide binding-like domains, and RNAi repression resulted in >100-fold resistance. CARP2 and CARP4 are hypothetical conserved proteins associated with the eukaryotic flagellar proteome or with flagellar function, with an orthologue of CARP4 implicated in human disease. CARP3 is a hypothetical protein, unique to Trypanosoma. CARP1 to CARP4 likely represent components of a novel cAMP signaling pathway in the parasite. As cAMP metabolism is validated as a drug target in Trypanosoma brucei, cAMP effectors highly divergent from the mammalian host, such as CARP1, lend themselves to further pharmacological development.
International Journal for Parasitology-Drugs and Drug Resistance | 2013
Jane C. Munday; Karla E. Rojas López; Anthonius A. Eze; V. Delespaux; Jan Van Den Abbeele; Tim Rowan; Michael P. Barrett; Liam J. Morrison; Harry P. de Koning
Graphical abstract Highlights ► Diminazene transporter in Trypanosoma congolense has been proposed to be TcoAT1. ► Here, TcoAT1 was cloned and functionally expressed in Trypanosoma brucei. ► TcoAT1 did not mediate the uptake of diminazene, only of purine nucleosides. ► Expression of TcoAT1 did not alter drug sensitivity in trypanosomes. ► We conclude that TcoAT1 is a transporter for purine nucleosides, not for diminazene.
Frontiers in Pharmacology | 2015
Jane C. Munday; Luca Settimo; Harry P. de Koning
Drug resistance in pathogenic protozoa is very often caused by changes to the ‘transportome’ of the parasites. In Trypanosoma brucei, several transporters have been implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arsenicals. The resistance mechanism had been thought to be due to loss of a transporter known to carry both types of agents: the aminopurine transporter P2, encoded by the gene TbAT1. However, although loss of P2 activity is well-documented as the cause of resistance to the veterinary diamidine diminazene aceturate (DA; Berenil®), cross-resistance between the human-use arsenical melarsoprol and the diamidine pentamidine (melarsoprol/pentamidine cross resistance, MPXR) is the result of loss of a separate high affinity pentamidine transporter (HAPT1). A genome-wide RNAi library screen for resistance to pentamidine, published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and TbAQP3. Further analysis determined that knockdown of only one pore, TbAQP2, produced the MPXR phenotype. TbAQP2 is an unconventional aquaglyceroporin with unique residues in the “selectivity region” of the pore, and it was found that in several MPXR lab strains the WT gene was either absent or replaced by a chimeric protein, recombined with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2 in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a possible structural rationale for this remarkable ability.
PLOS ONE | 2013
Juma A. M. Ali; Daniel N. A. Tagoe; Jane C. Munday; Anne M. Donachie; Liam J. Morrison; Harry P. de Koning
Background African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite. Methodology/Principal Findings Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line. Conclusions/Significance Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.
International Journal for Parasitology-Drugs and Drug Resistance | 2015
Fabrice E. Graf; Nicola Baker; Jane C. Munday; Harry P. de Koning; David Horn; Pascal Mäser
Highlights • Expression of AQP2 restores drug susceptibility in a resistant Trypanosoma brucei gambiense isolate.• The AQP2/3 chimera from the resistant isolate does not complement AQP2 deletion.• Hence AQP2/3 chimerization accompanied by loss of AQP2 is the cause of drug resistance.
Molecular Microbiology | 2015
Jane C. Munday; Daniel N. A. Tagoe; Anthonius A. Eze; Jessica Krezdorn; Karla E. Rojas López; Abdulsalam A. M. Alkhaldi; Fiona McDonald; Jennifer Still; Khalid J. Alzahrani; Luca Settimo; Harry P. de Koning
The Trypanosoma brucei aminopurine transporter P2/TbAT1 has long been implicated in the transport of, and resistance to, the diamidine and melaminophenyl arsenical classes of drugs that form the backbone of the pharmacopoeia against African trypanosomiasis. Genetic alterations including deletions and single nucleotide polymorphisms (SNPs) have been observed in numerous strains and clinical isolates. Here, we systematically investigate each reported mutation and assess their effects on transporter function after expression in a tbat1−/− T. brucei line. Out of a set of six reported SNPs from a reported ‘resistance allele’, none significantly impaired sensitivity to pentamidine, diminazene or melarsoprol, relative to the TbAT1‐WT allele, although several combinations, and the deletion of the codon for residue F316, resulted in highly significant impairment. These combinations of SNPs, and ΔF316, also strongly impaired the uptake of [3H]‐adenosine and [3H]‐diminazene, identical to the tbat1−/− control. The TbAT1 protein model predicted that residues F19, D140 and F316 interact with the substrate of the transporter. Mutation of D140 to alanine resulted in an inactive transporter, whereas the mutation F19A produced a transporter with a slightly increased affinity for [3H]‐diminazene but reduced the uptake rate. The results presented here validate earlier hypotheses of drug binding motifs for TbAT1.