Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane Christopher-Hennings is active.

Publication


Featured researches published by Jane Christopher-Hennings.


Veterinary Microbiology | 1997

Porcine reproductive and respiratory syndrome virus: a persistent infection.

R.W. Wills; J.J. Zimmerman; Kyoung Jin Yoon; Sabrina L. Swenson; Michael J. McGinley; Howard T. Hill; Kenneth B. Platt; Jane Christopher-Hennings; Eric A. Nelson

Persistent infection with porcine reproductive and respiratory syndrome virus (PRRSV) was shown in experimentally infected pigs by isolation of virus from oropharyngeal samples for up to 157 days after challenge. Four 4 week old, conventional, PRRSV antibody-negative pigs were intranasally inoculated with PRRSV (ATCC VR-2402). Serum samples were collected every 2 to 3 days until day 42 post inoculation (PI), then approximately every 14 days until day 213 PI. Fecal samples were collected at the time of serum collection through day 35 PI. Oropharyngeal samples were collected at the time of serum collection from 56 to 213 days PI by scraping the oropharyngeal area with a sterile spoon, especially targeting the palatine tonsil. Turbinate, tonsil, lung, parotid salivary gland, spleen, lymph nodes and serum were collected postmortem on day 220 PI. Virus isolation (VI) on porcine alveolar macrophage cultures was attempted on all serum, fecal and oropharyngeal samples, as well as tissues collected postmortem. Postmortem tonsil tissues and selected fecal samples were also assayed for the presence of PRRSV RNA by the polymerase chain reaction (PCR). Serum antibody titers were determined by IFA, ELISA and SVN. Virus was isolated from all serum samples collected on days 2 to 11 PI and intermittently for up to 23 days in two pigs. No PRRSV was isolated from fecal samples, but 3 of 24 samples were PCR positive, suggesting the presence of inactivated virus. Oropharyngeal samples from each pig were VI positive 1 or more times between 56 and 157 days PI. Oropharyngeal samples from 3 of 4 pigs were VI positive on days 56, 70 and 84 PI. Virus was isolated from one pig on day 157 PI, 134 days after the last isolation of virus from serum from this animal. Virus was isolated from oropharyngeal samples for several weeks after the maximum serum antibody response, as measured by IFA, ELISA and SVN tests. All tissues collected postmortem were VI negative and postmortem tonsil samples were also negative by PCR. An important element in the transmission of PRRSV is the duration of virus shedding. The results of this study provided direct evidence of persistent PRRSV infection and explain field observations of long-term herd infection and transmission via purchase of clinically normal, but PRRSV infected, animals. Effective prevention and control strategies will need to be developed in the context of these results.


Veterinary Pathology | 1995

Pathogenesis of Porcine Reproductive and Respiratory Syndrome Virus Infection in Gnotobiotic Pigs

Kurt Rossow; James E. Collins; Sagar M. Goyal; Eric A. Nelson; Jane Christopher-Hennings; David A. Benfield

The pathogenesis of porcine reproductive and respiratory syndrome virus (PRRSV) was determined in gnotobiotic pigs by studying the sequential development of microscopic lesions and sites of virus distribution and replication. Thirty-two pigs (three pigs/infected group and one pig/control group) were inoculated by nasal instillation of either PRRSV isolate ATCC VR-2332 (total dose 102,6 TCID50) or uninfected cell culture supernatant. Infected and control pigs were euthanized at 12 hours, and 1, 2, 3, 5, 7, 14, and 21 days postexposure (PE). Gnotobiotic pigs experimentally infected with PRRSV were viremic by 12 hours PE and subsequently developed pneumonia, lymphadenopathy, vasculitis, myocarditis, and encephalitis. Lung lesions developed by day 3 PE, persisted through day 21 PE and were characterized by alveolar septa thickened by macrophages, alveolar proteinaceous and karyorrhectic debris, alveolar syncytial cells, and multifocal type II pneumocyte hypertrophy. Lymph node lesions varied in distribution and severity and were characterized by germinal center hypertrophy and hyperplasia, lymphocyte necrosis, multiple cystic spaces, and polykaryocytes within the cystic spaces. Heart lesions were a late feature of infection and all infected pigs had heart lesions on day 21 PE characterized by subendocardial, myocardial, and perivascular foci of lymphocytes. Vasculitis also varied in distribution and severity and affected all sizes of vessels. Results of this experiment indicate that PRRSV is a multisystem disease characterized initially by viremia with subsequent virus distribution and replication in multiple organs causing interstitial pneumonia, vasculitis, lymphadenopathy, myocarditis, and encephalitis.


Journal of Virology | 2004

Characterization of Emerging European-Like Porcine Reproductive and Respiratory Syndrome Virus Isolates in the United States

Susan L. Ropp; Carrie Wees; Ying Fang; Eric A. Nelson; Kurt Rossow; Melissa Bien; Bill Arndt; Sarah Preszler; Pamela Steen; Jane Christopher-Hennings; James E. Collins; David A. Benfield; Kay S. Faaberg

ABSTRACT European-like field isolates of porcine reproductive and respiratory syndrome virus (PRRSV) have recently emerged in North America. The full-length genomic sequence of an index isolate characterized in 1999, strain EuroPRRSV, served as the reference strain for further studies of the evolution and epidemiology of European-like isolates (type 1) in the United States. Strain EuroPRRSV shared 90.1 to 100% amino acid identity with the prototype European strain, Lelystad, within the structural and nonstructural open reading frames (ORFs) and 95.3% overall nucleotide identity. The 5′ untranslated region and two nonstructural regions within ORF 1 were closely examined due to significant divergence from strain Lelystad. A 51-bp deletion in a region within ORF 1a, coding for nonstructural protein 2 (NSP2), was observed. Sequence analysis of the structural ORFs 2 to 7 of additional European-like isolates indicated that these isolates share 93% nucleotide identity with one another and 95 to 96% identity with the Lelystad strain but only 70% identity with the North American reference strain VR-2332. Phylogenetic analysis with published PRRSV ORF 3, 5, and 7 nucleotide sequences indicated that these newly emerging isolates form a clade with the Lelystad and United Kingdom PRRSV isolates. Detailed analysis of four of these isolates with a panel of 60 monoclonal antibodies directed against the structural proteins confirmed a recognition pattern that was more consistent with strain Lelystad than with other North American isolates.


Journal of Veterinary Diagnostic Investigation | 1995

Persistence of Porcine Reproductive and Respiratory Syndrome Virus in Serum and Semen of Adult Boars

Jane Christopher-Hennings; Eric A. Nelson; Rebecca J. Hines; Julie Nelson; Sabrina L. Swenson; Jeffrey J. Zimmerman; Christopher C. L. Chase; Michael J. Yaeger; David A. Benfield

Four seronegative adult boars were intranasally inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) isolate VR-2332. Serum and semen were collected 2-3 times weekly for over 100 days postinoculation (DPI). Serum samples were assayed for PRRSV by virus isolation (VI) and a polymerase chain reaction (PCR) and screened for antibodies to PRRSV using the indirect fluorescent antibody (IFA) and virus neutralization (VN) tests. Semen was assayed for PRRSV RNA by PCR. Virus or viral RNA was detected in the serum of all boars within 1 DPI by VI and/or PCR. However, VI results indicated that viremia was transient and occurred from 1 to 9 DPI. Viral RNA was detected in serum from 1 to 31 DPI. In the acute stage of the infection, PRRSV RNA was detected in serum by PCR prior to the presence of viral RNA in semen. The PRRSV RNA was detected in semen as early as 3 DPI and persisted for 25 DPI in 2 of the boars and 56 and 92 DPI in the remaining 2 boars. Detection of PRRSV RNA in semen occurred 2-8 and 28-35 days prior to the detection of antibodies by IFA and VN, respectively. PRRSV was isolated from the bulbourethral gland of the boar that shed viral RNA in semen for 92 DPI. These results suggest that PRRSV RNA can be detected by PCR in boar serum and semen, and may persist for variable periods of time. Viremia and the serologic status of the boar are not adequate indicators of when PRRSV or PRRSV RNA is being shed in the semen. Preliminary findings also indicated that neither shipping stress nor reinoculation with homologous PRRSV resulted in viremia or viral RNA shedding in semen.


Journal of Veterinary Diagnostic Investigation | 1994

Serum immune responses to the proteins of porcine reproductive and respiratory syndrome (PRRS) virus.

Eric A. Nelson; Jane Christopher-Hennings; David A. Benfield

The antibody responses of pigs to porcine reproductive and respiratory syndrome virus (isolate VR-2332) were evaluated by indirect immunofluorescence, virus neutralization, and immunoblotting. All pigs in each group were positive by indirect immunofluorescence 14-21 days postexposure (DPE), and antibodies to specific viral proteins (15, 19 or 26 kD) were initially demonstrated by immunoblotting at 7–21 days DPE. Neutralizing antibodies were detected in only 2 pigs that were inoculated intranasally and given additional parenteral injections with adjuvant. These antibodies appeared much later, 51–70 DPE, than did antibodies detected by indirect immunofluorescence. The titer of the neutralizing antibodies increased until 127 DPE, after which the titers decreased, and 1 animal became seronegative for neutralizing antibody by 262 DPE.


Journal of Veterinary Diagnostic Investigation | 2008

Detection of Porcine reproductive and respiratory syndrome virus infection in porcine oral fluid samples: a longitudinal study under experimental conditions.

John R. Prickett; Robert Simer; Jane Christopher-Hennings; Kyoung-Jin Yoon; Richard B. Evans; Jeffrey J. Zimmerman

Isolation of Porcine reproductive and respiratory syndrome virus (PRRSV) from oral fluids was first reported in 1997. The objective of the present study was to determine whether PRRSV and/or anti-PRRSV antibodies were present in oral fluids at diagnostic levels. The level and duration of PRRSV and anti-PRRSV antibodies in serum and oral fluids was evaluated in 3 age groups of pigs (4,8, or 12 weeks of age) inoculated with a type 2 (North American) PRRSV isolate. Serum, buccal swabs, and pen-based oral fluid samples were collected for 63 days following inoculation. Specimens were assayed for PRRSV by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), and for anti-PRRSV antibodies by enzyme-linked immunosorbent assay (ELISA) and indirect fluorescent antibody test (IFAT). Porcine reproductive and respiratory syndrome virus was detected by real-time qRT-PCR in serum for approximately 5 weeks and in oral fluids for approximately 4 weeks postinoculation. Pig age at the time of inoculation had no effect on the quantity or duration of virus in oral fluid samples. Low levels of anti-PRRSV antibody were detected in oral fluid samples by ELISA and IFAT. Although the approach remains to be validated in the field, the results of this experiment suggest that pen-based oral fluid sampling could be an efficient, cost-effective approach to PRRSV surveillance in swine populations.


Virology | 2010

Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist

Zhenhai Chen; Steven Lawson; Zhi Sun; X. Zhou; Xiangming Guan; Jane Christopher-Hennings; Eric A. Nelson; Ying Fang

Abstract The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1α and nsp1β subunits. In infected cells, we detected the actual existence of nsp1α and nsp1β. Cleavage sites between nsp1α/nsp1β and nsp1β/nsp2 were identified by protein microsequencing analysis. Time course study showed that nsp1α and nsp1β mainly localize into the cell nucleus after 10 h post infection. Further analysis revealed that both proteins dramatically inhibited IFN-β expression. The nsp1β was observed to significantly inhibit expression from an interferon-stimulated response element promoter after Sendai virus infection or interferon treatment. It was further determined to inhibit nuclear translocation of STAT1 in the JAK–STAT signaling pathway. These results demonstrated that nsp1β has ability to inhibit both interferon synthesis and signaling, while nsp1α alone strongly inhibits interferon synthesis. These findings provide important insights into mechanisms of nsp1 in PRRSV pathogenesis and its impact in vaccine development.


Journal of Clinical Microbiology | 2004

Detection of U.S., Lelystad, and European-Like Porcine Reproductive and Respiratory Syndrome Viruses and Relative Quantitation in Boar Semen and Serum Samples by Real-Time PCR

A. Wasilk; J. D. Callahan; Jane Christopher-Hennings; Ying Fang; Matthew A. Dammen; M. E. Reos; M. Torremorell; D. Polson; M. Mellencamp; Eric A. Nelson; W. M. Nelson

ABSTRACT Transmission of porcine reproductive and respiratory syndrome virus (PRRSV) via boar semen has been documented. Since semen is widely disseminated for artificial insemination and the virus can cause significant health and economic consequences, it is essential to have well-validated, rapid diagnostic techniques to detect and quantitate the virus for diagnostic and research purposes. Previously, boar semen was tested by a nested PCR (nPCR) assay which was compared to the “gold standard” swine bioassay. A correlation of 94% was observed, indicating that, most of the time, PCR detected infectious virus. Subsequently, a real-time PCR targeting the 3′ untranslated region of the PRRSV genome was compared with nPCR by testing 413 serum and semen samples from PRRSV-inoculated and control boars. There was 95% agreement between the results of the two tests, with the majority of samples with discordant results containing virus at the lower range of detection by the assays. The virus in all samples was quantitated by using a standard curve obtained by serial dilution of an in vitro transcript. By using the in vitro transcript, the lower limit of sensitivity was observed to be approximately 33 copies/ml. Reactivity with a panel of more than 100 PRRSV isolates from various geographical regions in the United States was also documented. No reactivity with nine nonrelated swine viruses was noted. A real-time PCR was also developed for the detection of the European Lelystad virus and the European-like PRRSV now found in the United States. In six of six PRRSV-inoculated boars, peak levels of viremia occurred at 5 days postinoculation (DPI) and were most consistently detectable throughout 22 DPI. In five of six boars, PRRSV was shed in semen for 0 to 2 days during the first 10 DPI; however, one of six boars shed the virus in semen through 32 DPI. Therefore, in general, the concentration and duration of PRRSV shedding in semen did not correlate with the quantity or duration of virus in serum. These differences warrant further studies into the factors that prevent viral replication in the reproductive tract.


Journal of Virology | 2006

A Full-Length cDNA Infectious Clone of North American Type 1 Porcine Reproductive and Respiratory Syndrome Virus: Expression of Green Fluorescent Protein in the Nsp2 Region

Ying Fang; Raymond R. R. Rowland; Michael B. Roof; Joan K. Lunney; Jane Christopher-Hennings; Eric A. Nelson

ABSTRACT The recent emergence of a unique group of North American type 1 porcine reproductive and respiratory syndrome virus (PRRSV) in the United States presents new disease control problems for a swine industry that has already been impacted seriously by North American type 2 PRRSV. In this study, a full-length cDNA infectious clone was generated from a low-virulence North American type 1 PRRSV isolate, SD01-08. In vitro studies demonstrated that the cloned virus maintained growth properties similar to those of the parental virus. Virological, pathological, and immunological observations from animals challenged with cloned viruses were similar to those from animals challenged with the parental virus and a modified live virus vaccine. To further explore the potential use as a viral backbone for expressing foreign genes, the green fluorescent protein (GFP) was inserted into a unique deletion site located at amino acid positions 348 and 349 of the predicted Nsp2 region in the virus, and expression of the Nsp2-GFP fusion protein was visualized by fluorescent microscopy. The availability of this North American type 1 infectious clone provides an important research tool for further study of the basic viral biology and pathogenic mechanisms of this group of type 1 PRRSV in the United States.


Archives of Virology | 2007

Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability

Xiuqing Wang; M. Eaton; M. Mayer; H. Li; D. He; Eric A. Nelson; Jane Christopher-Hennings

Summary.Dendritic cells (DC) are potent antigen-presenting cells that play an important role in inducing primary antigen-specific immune responses. However, some viruses have evolved to specifically target DC to circumvent the host’s immune responses for their persistence in the host. Porcine reproductive and respiratory syndrome virus (PRRSV) causes a persistent infection in susceptible animals. Although it is generally believed that the existence of PRRSV quasispecies is partly responsible for the virus persistence, other mechanisms of immune evasion or immune suppression may also exist. Here, we studied the role of DC in PRRSV persistence and immune suppression. Our results showed that PRRSV underwent a productive replication in pig monocyte-derived DC (Mo-DC) as measured by both immunofluorescence staining of viral nucleocapsid protein and virus titration assays, leading to cell death via both apoptosis and necrosis mechanisms. Additionally, PRRSV infection of Mo-DC resulted in reduced expression of MHC class I, MHC class II, CD14 and CD11b/c. This was in agreement with the impaired mixed lymphocyte reaction of PRRSV-infected Mo-DC compared to that of mock-infected Mo-DC. We also examined the cytokine profiles of PRRSV-infected Mo-DC using a quantitative ELISA method. Results indicated that no apparent change in the levels of IL-10, IL-12 and IFN-gamma was detected. Taken together, our data demonstrate that PRRSV productively infects Mo-DC and impairs the normal antigen presentation ability of Mo-DC by inducing cell death, down-regulating the expression of MHC class I, MHC class II, CD11b/c and CD14 and by inducing minimal Th1 cytokines.

Collaboration


Dive into the Jane Christopher-Hennings's collaboration.

Top Co-Authors

Avatar

Eric A. Nelson

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Travis Clement

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Ying Fang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Steven Lawson

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Singrey

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Joan K. Lunney

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Diego G. Diel

South Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge