Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane E. Stewart is active.

Publication


Featured researches published by Jane E. Stewart.


Fungal Biology | 2009

Didymella pisi sp. nov., the teleomorph of Ascochyta pisi

Martin I. Chilvers; Jack D. Rogers; Frank M. Dugan; Jane E. Stewart; Weidong Chen; Tobin L. Peever

The anamorphic pycnidial fungus Ascochyta pisi is one member of a species complex that causes Ascochyta blight of pea, a potentially devastating disease. The teleomorphic state of this fungus was induced under laboratory conditions. Using morphological and molecular characters, we placed the teleomorph within the genus Didymella as D. pisi and describe a heterothallic mating system using a PCR-based mating type assay and in vitro crosses. We compare D. pisi with other Didymella spp. with which it might be confused.


Phytopathology | 2006

Molecular Characterization of Fusarium oxysporum and Fusarium commune Isolates from a Conifer Nursery

Jane E. Stewart; Mee-Sook Kim; Robert L. James; R. Kasten Dumroese; Ned B. Klopfenstein

ABSTRACT Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and colony morphology are not correlated. Forty-one isolates of Fusarium spp., morphologically indistinguishable from F. oxysporum, were collected from nursery samples (soils, healthy seedlings, and diseased seedlings). These isolates were characterized by amplified fragment length polymorphism (AFLP) and DNA sequencing of nuclear rDNA (internal transcribed spacer including 5.8S rDNA), mitochon-drial rDNA (small subunit [mtSSU]), and nuclear translation elongation factor 1-alpha. Each isolate had a unique AFLP phenotype. Out of 121 loci, 111 (92%) were polymorphic; 30 alleles were unique to only highly virulent isolates and 33 alleles were unique to only isolates nonpathogenic on conifers. Maximum parsimony and Bayesian analyses of DNA sequences from all three regions and the combined data set showed that all highly virulent isolates clearly separated into a common clade that contained F. commune, which was recently distinguished from its sister taxon, F. oxysporum. Interestingly, all but one of the nonpathogenic isolates grouped into a common clade and were genetically similar to F. oxysporum. The AFLP cladograms had similar topologies when compared with the DNA-based phylograms. Although all tested isolates were morphologically indistinguishable from F. oxysporum based on currently available monographs, some morphological traits can be plastic and unreliable for identification of Fusarium spp. We consider the highly virulent isolates to be F. commune based on strong genetic evidence. To our knowledge, this is the first reported evidence that shows F. commune is a cause of Fusarium disease (root rot and dampingoff) on Douglas-fir seedlings. Furthermore, several AFLP genetic markers and mtSSU sequences offer potential for development of molecular markers that could be used to detect and distinguish isolates of F. oxysporum nonpathogenic to conifers and highly virulent isolates of F. commune in forest nurseries.


BMC Evolutionary Biology | 2014

Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen.

Jane E. Stewart; L. W. Timmer; Christopher B. Lawrence; Barry M. Pryor; Tobin L. Peever

BackgroundTraditional morphological and biological species concepts are difficult to apply to closely related, asexual taxa because of the lack of an active sexual phase and paucity of morphological characters. Phylogenetic species concepts such as genealogical concordance phylogenetic species recognition (GCPSR) have been extensively used; however, methods that incorporate gene tree uncertainty into species recognition may more accurately and objectively delineate species. Using a worldwide sample of Alternaria alternata sensu lato, causal agent of citrus brown spot, the evolutionary histories of four nuclear loci including an endo-polygalacturonase gene, two anonymous loci, and one microsatellite flanking region were estimated using the coalescent. Species boundaries were estimated using several approaches including those that incorporate uncertainty in gene genealogies when lineage sorting and non-reciprocal monophyly of gene trees is common.ResultsCoalescent analyses revealed three phylogenetic lineages strongly influenced by incomplete lineage sorting and recombination. Divergence of the citrus 2 lineage from the citrus 1 and citrus 3 lineages was supported at most loci. A consensus of species tree estimation methods supported two species of Alternaria causing citrus brown spot worldwide. Based on substitution rates at the endo-polygalacturonase locus, divergence of the citrus 2 and the 1 and 3 lineages was estimated to have occurred at least 5, 400 years before present, predating the human-mediated movement of citrus and associated pathogens out of SE Asia.ConclusionsThe number of Alternaria species identified as causing brown spot of citrus worldwide using morphological criteria has been overestimated. Little support was found for most of these morphospecies using quantitative species recognition approaches. Correct species delimitation of plant-pathogenic fungi is critical for understanding the evolution of pathogenicity, introductions of pathogens to new areas, and for regulating the movement of pathogens to enforce quarantines. This research shows that multilocus phylogenetic methods that allow for recombination and incomplete lineage sorting can be useful for the quantitative delimitation of asexual species that are morphologically indistinguishable. Two phylogenetic species of Alternaria were identified as causing citrus brown spot worldwide. Further research is needed to determine how these species were introduced worldwide, how they differ phenotypically and how these species are maintained.


Phytopathology | 2013

Signatures of recombination in clonal lineages of the citrus brown spot pathogen, Alternaria alternata sensu lato.

Jane E. Stewart; Kalyn Thomas; Christopher B. Lawrence; Ha X. Dang; Barry M. Pryor; L. M. (Pete) Timmer; Tobin L. Peever

Most Alternaria spp. are considered asexual but recent molecular evolution analyses of Alternaria mating-type genes show that the mating locus is under strong purifying selection, indicating a possible role in sexual reproduction. The objective of this study was to determine the mode of reproduction of an Alternaria alternata sensu lato population causing citrus brown spot in central Florida. Mating type of each isolate was determined, and isolates were sequenced at six putatively unlinked loci. Three genetically distinct subpopulations (SH1, SH4A, and SH4B) were identified using network and Bayesian population structure analyses. Results demonstrate that most subpopulations of A. alternata associated with citrus are clonal but some have the ability to extensively recombine through a cryptic sexual cycle or parasexual cycle. Although isolates were sampled in close physical proximity (≈2,500-m² area), we were able to reject a random mating model using multilocus gametic disequilibrium tests for two subpopulations, SH1 and SH4B, suggesting that these subpopulations were predominantly asexual. However, three recombination events were identified in SH1 and SH4B and localized to individuals of opposite mating type, possibly indicating meiotic recombination. In contrast, in the third subpopulation (SH4A), where only one mating type was present, extensive reticulation was evident in network analyses, and multilocus gametic disequilibrium tests were consistent with recombination. Recombination among isolates of the same mating type suggests that a nonmeiotic mechanism of recombination such as the parasexual cycle may be operating in this subpopulation. The level of gene flow detected among subpopulations does not appear to be sufficient to prevent differentiation, and perhaps future speciation, of these A. alternata subpopulations.


Fungal Biology | 2015

Evolutionary history and variation in host range of three Stagonosporopsis species causing gummy stem blight of cucurbits

Jane E. Stewart; Ashley N. Turner; Marin Talbot Brewer

Recently diverged species may form complexes of morphologically similar, yet genetically distinct lineages that occur in overlapping geographic ranges and niches. Using a multilocus sequencing approach we discovered that gummy stem blight of cucurbits is caused by three genetically distinct species: Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), Stagonosporopsis citrulli, and Stagonosporopsis caricae, which had previously been considered only a pathogen of papaya. Experiments showed that all three species are pathogenic to cucurbits in the genera Cucurbita, Cucumis, and Citrullus, but only S. caricae is aggressive to papaya. Species tree estimates show that S. citrulli and S. cucurbitacearum are phylogenetically distinct sister species, and that S. caricae is the ancestral lineage. The time estimate for divergence of S. caricae from the ancestor of S. cucurbitacearum and S. citrulli at 72 900 YBP pre-dates domestication of papaya and Cucurbita species in the American tropics. The divergence estimate observed for S. cucurbitacearum and S. citrulli at 10 900 YBP suggests that diversification of Cucurbita species and domestication of gourds and squashes could have driven their divergence. This work highlights the use of molecular systematics and population genetics to elucidate genetic identity among previously unassociated fungi and to understand the patterns of pathogen diversification.


Current Genetics | 2010

Identification and function of a polyketide synthase gene responsible for 1,8-dihydroxynaphthalene-melanin pigment biosynthesis in Ascochyta rabiei

Hajime Akamatsu; Martin I. Chilvers; Jane E. Stewart; Tobin L. Peever

Ascochyta rabiei produces and accumulates one of the well-known fungal polyketides, 1,8-dihydroxynaphthalene-melanin pigment (DHN-melanin), in asexual and sexual fruiting bodies. Degenerate PCR primers were used to isolate an ArPKS1 of A. rabiei encoding a polypeptide with high similarity to polyketide synthase (PKS) involved in biosynthesis of DHN-melanin in other ascomycetous fungi. Site-directed mutagenesis of ArPKS1 in A. rabiei generated melanin-deficient pycnidial mutants but caused no significant reduction of pathogenicity to chickpea. Pycnidiospores in ArPKS1-mutant pycnidia showed higher sensitivity to UV light exposure compared to pycnidiospores in melanized pycnidia of the wild-type progenitor isolate. Integration of an orthologous PKS1 gene from Bipolaris oryzae into the genome of the mutants complemented the dysfunctional ArPKS1 gene. This study demonstrated that A. rabiei uses a DHN-melanin pathway for pigmentation of pycnidia and this molecule may protect pycnidiospores from UV irradiation.


Standards in Genomic Sciences | 2011

Complete genome of the onion pathogen Enterobacter cloacae EcWSU1

Jodi L. Humann; Mark R. Wildung; Chun-Huai Cheng; Taein Lee; Jane E. Stewart; Jennifer C. Drew; Eric W. Triplett; Doreen Main; Brenda K. Schroeder

Previous studies have shown that the members of the Enterobacter cloacae complex are difficult to differentiate with biochemical tests and in phylogenetic studies using multilocus sequence analysis, strains of the same species separate into numerous clusters. There are only a few complete E. cloacae genome sequences and very little knowledge about the mechanism of pathogenesis of E. cloacae on plants and humans. Enterobacter cloacae EcWSU1 causes Enterobacter bulb decay in stored onions (Allium cepa). The EcWSU1 genome consists of a 4,734,438 bp chromosome and a mega-plasmid of 63,653 bp. The chromosome has 4,632 protein coding regions, 83 tRNA sequences, and 8 rRNA operons.


Mycologia | 2013

Development of sequence characterized amplified genomic regions (SCAR) for fungal systematics: proof of principle using Alternaria, Ascochyta and Tilletia

Jane E. Stewart; Marion Andrew; Xiaodong Bao; Martin I. Chilvers; Lori M. Carris; Tobin L. Peever

SCARs were developed by cloning RAPD-PCR amplicons into commercially available vectors, sequencing them and designing specific primers for PCR, direct sequencing and phylogenetic analysis. Eighteen to seventy percent of cloned RAPD-PCR amplicons were phylogenetically informative among closely related small-spored Alternaria spp., Ascochyta spp. and Tilletia spp., taxa that have been resistant to phylogenetic analysis with universally primed, protein-coding sequence data. Selected SCARs were sequenced for larger, population-scale samples of each taxon and demonstrated to be useful for phylogenetic inference. Variation observed in the cloned SCARs generally was higher than variation in nuclear ribosomal internal transcribed spacer (ITS) and several protein-coding sequences commonly used in lower level fungal systematics. Sequence data derived from SCARs will provide sufficient resolution to address lower level phylogenetic hypotheses in Alternaria, Ascochyta, Tilletia and possibly many other fungal groups and organisms.


Mycologia | 2017

Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences

Ned B. Klopfenstein; Jane E. Stewart; Yuko Ota; John Hanna; Bryce A. Richardson; Amy L. Ross-Davis; Rubén D. Elías-Román; Kari T. Korhonen; Nenad Keča; Eugenia Iturritxa; Dionicio Alvarado-Rosales; Halvor Solheim; Nicholas J. Brazee; Piotr Łakomy; Michelle Cleary; Eri Hasegawa; Taisei Kikuchi; Fortunato Garza-Ocañas; Panaghiotis Tsopelas; Daniel Rigling; Simone Prospero; Tetyana Tsykun; Jean A. Bérubé; Franck O. P. Stefani; Saeideh Jafarpour; Vladimír Antonín; Michal Tomšovský; Geral I. McDonald; Stephen Woodward; Mee-Sook Kim

ABSTRACT Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence–based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis (Eurasia) clade 2. Of note is that A. borealis (Eurasia) clade 1 appears basal to the Solidipes/Ostoyae and Gallica superclades. The Neighbor-net analysis showed similar phylogenetic relationships. This study further demonstrates the utility of tef1 for global phylogenetic studies of Armillaria species and provides critical insights into multiple taxonomic issues that warrant further study.


PLOS ONE | 2016

Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

Anthony E. Glenn; C. Britton Davis; Minglu Gao; Scott E. Gold; Trevor R. Mitchell; Robert H. Proctor; Jane E. Stewart; Maurice E. Snook

Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence.

Collaboration


Dive into the Jane E. Stewart's collaboration.

Top Co-Authors

Avatar

Ned B. Klopfenstein

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy L. Ross-Davis

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

John W. Hanna

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Tobin L. Peever

Washington State University

View shared research outputs
Top Co-Authors

Avatar

N. B. Klopfenstein

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah S. Page-Dumroese

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Geral I. McDonald

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge