Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane H. Buckner is active.

Publication


Featured researches published by Jane H. Buckner.


Journal of Clinical Investigation | 2003

Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25– T cells

Mindi Walker; Deborah J. Kasprowicz; Vivian H. Gersuk; Angèle Bénard; Megan Van Landeghen; Jane H. Buckner; Steven F. Ziegler

CD4+CD25+ regulatory T (TR) cells have been described in both humans and mice. In mice, TR are thymically derived, and lack of TR leads to organ-specific autoimmunity. Recently, the forkhead/winged helix transcription factor, FoxP3, has been shown to be important for the function of TR cells in mice. In this study, human TR cells were examined and, in results similar to those of studies done in mice, expression of FoxP3 was found exclusively in CD4+CD25+ T cells and correlated with the suppressive activity of these cells. In contrast to the mouse studies, activation of human CD4+CD25- T cells led to expression of FoxP3. Expression of FoxP3 in activated human CD4+CD25+ cells also correlated with suppression of proliferation by these cells in freshly isolated CD4+CD25- T cells from the same donor. This suppression was cell-contact dependent and cytokine independent. Thus, in humans, during activation of CD4+CD25- T cells in an immune response, two populations of cells may arise, effector CD4+CD25+ and regulatory CD4+CD25+ T cells, with expression of FoxP3 correlated with regulatory activity. These data also raise the possibility that a failure to generate peripheral TR cells properly may contribute to autoimmune disease and suggest a possible therapeutic role for FoxP3 in the treatment of such diseases.


Nature Reviews Immunology | 2010

Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases

Jane H. Buckner

A lack of regulatory T (TReg) cells that express CD4, CD25 and forkhead box P3 (FOXP3) results in severe autoimmunity in both mice and humans. Since the discovery of TReg cells, there has been intense investigation aimed at determining how they protect an organism from autoimmunity and whether defects in their number or function contribute to the development of autoimmunity in model systems. The next phase of investigation — that is, to define the role that defects in TReg cells have in human autoimmunity — is now underway. This Review summarizes our progress so far towards understanding the role of CD4+CD25+FOXP3+ TReg cells in human autoimmune diseases and the impact that this knowledge might have on the diagnosis and treatment of these diseases.


Journal of Immunology | 2007

Genetic Variation in PTPN22 Corresponds to Altered Function of T and B Lymphocytes

Mary Rieck; Adrian F. Arechiga; Suna Onengut-Gumuscu; Carla J. Greenbaum; Patrick Concannon; Jane H. Buckner

A variant of the PTPN22 gene, 1858C/T, is associated with an increased risk for the development of a wide array of autoimmune disorders. It is known that the protein tyrosine phosphatase Lyp encoded by this gene has an inhibitory effect on the proximal TCR signaling pathways. However, the consequences of carrying this variant and the mechanism by which it contributes to the development of autoimmunity are poorly understood. In this study, we demonstrate that homozygosity for this variant results in a profound deficit in T cell responsiveness to Ag stimulation. Heterozygosity for the variant allele is associated with reduced responsiveness of CD4+ memory T cells, characterized by diminished calcium mobilization, expression of CD25, and IL-10 production upon TCR stimulation. Additionally, the presence of the variant allele is associated with an increase in circulating memory T cells. We further demonstrate that these effects are not limited to the T cell compartment. Individuals with the variant allele have fewer memory B cells and these cells display a reduced response to stimulation via the BCR indicative of a B cell intrinsic defect. By identifying an immunologic phenotype in healthy subjects which correlates with the PTPN22 1858C/T genotype, we can now explore specific hypotheses regarding pathogenesis of diseases associated with the PTPN22 1858T variant.


Journal of Immunology | 2008

The Effector T Cells of Diabetic Subjects Are Resistant to Regulation via CD4+FOXP3+ Regulatory T Cells

Anya Schneider; Mary Rieck; Srinath Sanda; Catherine Pihoker; Carla J. Greenbaum; Jane H. Buckner

Defects in immune regulation have been implicated in the pathogenesis of diabetes in mouse and in man. In vitro assays using autologous regulatory (Treg) and responder effector (Teff) T cells have shown that suppression is impaired in diabetic subjects. In this study, we addressed whether the source of this defect is intrinsic to the Treg or Teff compartment of diabetic subjects. We first established that in type 1 diabetes (T1D) individuals, similar levels of impaired suppression were seen, irrespective of whether natural (nTreg) or adaptive Treg (aTreg) were present. Then using aTreg, we examined the ability of T1D aTreg to suppress Teff of healthy controls, as compared with the ability of control aTreg to suppress Teff of diabetic subjects. Taking this approach, we found that the aTregs from T1D subjects function normally in the presence of control Teff, and that the T1D Teff were resistant to suppression in the presence of control aTreg. This escape from regulation was seen with nTreg as well and was not transferred to control Teff coincubated with T1D Teff. Thus, the “defective regulation” in T1D is predominantly due to the resistance of responding T cells to Treg and is a characteristic intrinsic to the T1D Teff. This has implications with respect to pathogenic mechanisms, which underlie the development of disease and the target of therapies for T1D.


Blood | 2010

Complement receptor 2/CD21− human naive B cells contain mostly autoreactive unresponsive clones

Isabelle Isnardi; Yen Shing Ng; Laurence Menard; Greta Meyers; David Saadoun; Iva Srdanovic; Jonathan Samuels; Jessica Berman; Jane H. Buckner; Charlotte Cunningham-Rundles; Eric Meffre

Complement receptor 2-negative (CR2/CD21(-)) B cells have been found enriched in patients with autoimmune diseases and in common variable immunodeficiency (CVID) patients who are prone to autoimmunity. However, the physiology of CD21(-/lo) B cells remains poorly characterized. We found that some rheumatoid arthritis (RA) patients also display an increased frequency of CD21(-/lo) B cells in their blood. A majority of CD21(-/lo) B cells from RA and CVID patients expressed germline autoreactive antibodies, which recognized nuclear and cytoplasmic structures. In addition, these B cells were unable to induce calcium flux, become activated, or proliferate in response to B-cell receptor and/or CD40 triggering, suggesting that these autoreactive B cells may be anergic. Moreover, gene array analyses of CD21(-/lo) B cells revealed molecules specifically expressed in these B cells and that are likely to induce their unresponsive stage. Thus, CD21(-/lo) B cells contain mostly autoreactive unresponsive clones, which express a specific set of molecules that may represent new biomarkers to identify anergic B cells in humans.


Science Translational Medicine | 2015

Type 1 diabetes immunotherapy using polyclonal regulatory T cells

Jeffrey A. Bluestone; Jane H. Buckner; Mark Fitch; Stephen E. Gitelman; Shipra Gupta; Marc K. Hellerstein; Kevan C. Herold; Angela Lares; Michael R. Lee; Kelvin Li; Weihong Liu; S. Alice Long; Lisa M. Masiello; Vinh Nguyen; Amy L. Putnam; Mary Rieck; Peter Sayre; Qizhi Tang

Autologous regulatory T cells can be expanded and are well tolerated in patients with recent-onset type 1 diabetes. Regulating type 1 diabetes In patients with type 1 diabetes (T1D), immune cells attack the insulin-producing β cells of the pancreas. The resulting prolonged increase in blood sugar levels can lead to serious complications including heart disease and kidney failure. Regulatory T cells (Tregs) have been shown to be defective in autoimmune diseases. Now, Bluestone et al. report a phase 1 trial of adoptive Treg immunotherapy to repair or replace Tregs in type 1 diabetics. The ex vivo–expanded polyclonal Tregs were long-lived after transfer and retained a broad Treg phenotype long-term. Moreover, the therapy was safe, supporting efficacy testing in further trials. Type 1 diabetes (T1D) is an autoimmune disease that occurs in genetically susceptible individuals. Regulatory T cells (Tregs) have been shown to be defective in the autoimmune disease setting. Thus, efforts to repair or replace Tregs in T1D may reverse autoimmunity and protect the remaining insulin-producing β cells. On the basis of this premise, a robust technique has been developed to isolate and expand Tregs from patients with T1D. The expanded Tregs retained their T cell receptor diversity and demonstrated enhanced functional activity. We report on a phase 1 trial to assess safety of Treg adoptive immunotherapy in T1D. Fourteen adult subjects with T1D, in four dosing cohorts, received ex vivo–expanded autologous CD4+CD127lo/−CD25+ polyclonal Tregs (0.05 × 108 to 26 × 108 cells). A subset of the adoptively transferred Tregs was long-lived, with up to 25% of the peak level remaining in the circulation at 1 year after transfer. Immune studies showed transient increases in Tregs in recipients and retained a broad Treg FOXP3+CD4+CD25hiCD127lo phenotype long-term. There were no infusion reactions or cell therapy–related high-grade adverse events. C-peptide levels persisted out to 2+ years after transfer in several individuals. These results support the development of a phase 2 trial to test efficacy of the Treg therapy.


Diabetes | 2010

Defects in IL-2R Signaling Contribute to Diminished Maintenance of FOXP3 Expression in CD4+CD25+ Regulatory T-Cells of Type 1 Diabetic Subjects

S. Alice Long; Karen Cerosaletti; Paul L. Bollyky; Megan Tatum; Heather Shilling; Sheng Zhang; Zhong Yin Zhang; Catherine Pihoker; Srinath Sanda; Carla J. Greenbaum; Jane H. Buckner

OBJECTIVE In humans, multiple genes in the interleukin (IL)-2/IL-2 receptor (IL-2R) pathway are associated with type 1 diabetes. However, no link between IL-2 responsiveness and CD4+CD25+FOXP3+ regulatory T-cells (Tregs) has been demonstrated in type 1 diabetic subjects despite the role of these IL-2–dependent cells in controlling autoimmunity. Here, we address whether altered IL-2 responsiveness impacts persistence of FOXP3 expression in Tregs of type 1 diabetic subjects. RESEARCH DESIGN AND METHODS Persistence of Tregs was assessed by culturing sorted CD4+CD25hi natural Tregs with IL-2 and measuring FOXP3 expression over time by flow cytometry for control and type 1 diabetic populations. The effects of IL-2 on FOXP3 induction were assessed 48 h after activation of CD4+CD25− T-cells with anti-CD3 antibody. Cytokine receptor expression and signaling upon exposure to IL-2, IL-7, and IL-15 were determined by flow cytometry and Western blot analysis. RESULTS Maintenance of FOXP3 expression in CD4+CD25+ Tregs of type 1 diabetic subjects was diminished in the presence of IL-2, but not IL-7. Impaired responsiveness was not linked to altered expression of the IL-2R complex. Instead, IL-2R signaling was reduced in Tregs and total CD4+ T-cells of type 1 diabetic subjects. In some individuals, decreased signal transducer and activator of transcription 5 phosphorylation correlated with significantly higher expression of protein tyrosine phosphatase N2, a negative regulator of IL-2R signaling. CONCLUSIONS Aberrant IL-2R signaling in CD4+ T-cells of type 1 diabetic subjects contributes to decreased persistence of FOXP3 expression that may impact establishment of tolerance. These findings suggest novel targets for treatment of type 1 diabetes within the IL-2R pathway and suggest that an altered IL-2R signaling signature may be a biomarker for type 1 diabetes.


Journal of Clinical Investigation | 2011

The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans

Laurence Menard; David Saadoun; Isabelle Isnardi; Yen Shing Ng; Greta Meyers; Christopher Massad; Christina C. Price; Clara Abraham; Roja Motaghedi; Jane H. Buckner; Peter K. Gregersen; Eric Meffre

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene polymorphisms are associated with many autoimmune diseases. The major risk allele encodes an R620W amino acid change that alters B cell receptor (BCR) signaling involved in the regulation of central B cell tolerance. To assess whether this PTPN22 risk allele affects the removal of developing autoreactive B cells, we tested by ELISA the reactivity of recombinant antibodies isolated from single B cells from asymptomatic healthy individuals carrying one or two PTPN22 risk allele(s) encoding the PTPN22 R620W variant. We found that new emigrant/transitional and mature naive B cells from carriers of this PTPN22 risk allele contained high frequencies of autoreactive clones compared with those from non-carriers, revealing defective central and peripheral B cell tolerance checkpoints. Hence, a single PTPN22 risk allele has a dominant effect on altering autoreactive B cell counterselection before any onset of autoimmunity. In addition, gene array experiments analyzing mature naive B cells displaying PTPN22 risk allele(s) revealed that the association strength of PTPN22 for autoimmunity may be due not only to the impaired removal of autoreactive B cells but also to the upregulation of genes such as CD40, TRAF1, and IRF5, which encode proteins that promote B cell activation and have been identified as susceptibility genes associated with autoimmune diseases. These data demonstrate that early B cell tolerance defects in autoimmunity can result from specific polymorphisms and precede the onset of disease.


Diabetes | 2012

Rapamycin/IL-2 Combination Therapy in Patients with Type 1 Diabetes Augments Tregs yet Transiently Impairs β-Cell Function

S. Alice Long; Mary Rieck; Srinath Sanda; Jennifer Bollyky; P. L. Samuels; Robin Goland; Andrew J. Ahmann; Alex Rabinovitch; Sudeepta Aggarwal; Deborah Phippard; Laurence A. Turka; Mario R. Ehlers; Peter Bianchine; Karen D. Boyle; Steven A. Adah; Jeffrey A. Bluestone; Jane H. Buckner; Carla J. Greenbaum

Rapamycin/interleukin-2 (IL-2) combination treatment of NOD mice effectively treats autoimmune diabetes. We performed a phase 1 clinical trial to test the safety and immunologic effects of rapamycin/IL-2 combination therapy in type 1 diabetic (T1D) patients. Nine T1D subjects were treated with 2–4 mg/day rapamycin orally for 3 months and 4.5 × 106 IU IL-2 s.c. three times per week for 1 month. β-Cell function was monitored by measuring C-peptide. Immunologic changes were monitored using flow cytometry and serum analyses. Regulatory T cells (Tregs) increased within the first month of therapy, yet clinical and metabolic data demonstrated a transient worsening in all subjects. The increase in Tregs was transient, paralleling IL-2 treatment, whereas the response of Tregs to IL-2, as measured by STAT5 phosphorylation, increased and persisted after treatment. No differences were observed in effector T-cell subset frequencies, but an increase in natural killer cells and eosinophils occurred with IL-2 therapy. Rapamycin/IL-2 therapy, as given in this phase 1 study, resulted in transient β-cell dysfunction despite an increase in Tregs. Such results highlight the difficulties in translating therapies to the clinic and emphasize the importance of broadly interrogating the immune system to evaluate the effects of therapy.


Journal of Immunology | 2009

Cutting Edge: The PTPN22 Allelic Variant Associated with Autoimmunity Impairs B Cell Signaling

Adrian F. Arechiga; Tania Habib; Yantao He; Xian Zhang; Zhong Yin Zhang; Andrew Funk; Jane H. Buckner

PTPN22 is a gene encoding the protein tyrosine phosphatase Lyp. A missense mutation changing residue 1858 from cytosine to thymidine (1858C/T) is associated with multiple autoimmune disorders. Studies have demonstrated that Lyp has an inhibitory effect on TCR signaling; however, the presence of autoantibodies in all of the diseases associated with the 1858T variant and recent evidence that Ca2+ flux is altered in B cells of 1858T carriers indicate a role for Lyp in B cell signaling. In this study we show that B cell signal transduction is impaired in individuals who express the variant. This defect in signaling is characterized by a deficit in proliferation, a decrease in phosphorylation of key signaling proteins, and is reversed by inhibition of Lyp. These findings suggest that the PTPN22 1858T variant alters BCR signaling and implicate B cells in the mechanism by which the PTPN22 1858T variant contributes to autoimmunity.

Collaboration


Dive into the Jane H. Buckner's collaboration.

Top Co-Authors

Avatar

Gerald T. Nepom

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar

Carla J. Greenbaum

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mary Rieck

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar

S. Alice Long

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kevin D. Deane

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Peter K. Gregersen

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michael H. Weisman

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ted R. Mikuls

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

V. Michael Holers

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge