Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane Hornickel is active.

Publication


Featured researches published by Jane Hornickel.


Cerebral Cortex | 2009

Reading and Subcortical Auditory Function

Karen Banai; Jane Hornickel; Erika Skoe; Trent Nicol; Steven G. Zecker; Nina Kraus

Although it is largely agreed that phonological processing deficits are a major cause of poor reading, the neural origins of phonological processing are not well understood. We now show, for the first time, that phonological decoding, measured with a test of single-nonword reading, is significantly correlated with the timing of subcortical auditory processing and also, to a lesser extent, with the robustness of subcortical representation of the harmonic content of speech, but not with pitch encoding. The relationships we observe between reading and subcortical processing fall along a continuum, with poor readers at one end and good readers at the other. These data suggest that reading skill may depend on the integrity of subcortical auditory mechanisms and are consistent with the idea that subcortical representation of the acoustic features of speech may play a role in normal reading as well as in the development of reading disorders. These data establish a significant link between subcortical auditory function and reading, thereby contributing to the understanding of the biological bases of reading. At a more general level, these findings are among the first to establish a direct relationship between subcortical sensory function and a specific cognitive skill (reading). We argue that this relationship between cortical and subcortical function could be shaped during development by the corticofugal pathway and that this cortical-subcortical link could contribute to the phonological processing deficits experienced by poor readers.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception

Jane Hornickel; Erika Skoe; Trent Nicol; Steven G. Zecker; Nina Kraus

Children with reading impairments have deficits in phonological awareness, phonemic categorization, speech-in-noise perception, and psychophysical tasks such as frequency and temporal discrimination. Many of these children also exhibit abnormal encoding of speech stimuli in the auditory brainstem, even though responses to click stimuli are normal. In typically developing children the auditory brainstem response reflects acoustic differences between contrastive stop consonants. The current study investigated whether this subcortical differentiation of stop consonants was related to reading ability and speech-in-noise performance. Across a group of children with a wide range of reading ability, the subcortical differentiation of 3 speech stimuli ([ba], [da], [ga]) was found to be correlated with phonological awareness, reading, and speech-in-noise perception, with better performers exhibiting greater differences among responses to the 3 syllables. When subjects were categorized into terciles based on phonological awareness and speech-in-noise performance, the top-performing third in each grouping had greater subcortical differentiation than the bottom third. These results are consistent with the view that the neural processes underlying phonological awareness and speech-in-noise perception depend on reciprocal interactions between cognitive and perceptual processes.


The Journal of Neuroscience | 2013

Unstable Representation of Sound: A Biological Marker of Dyslexia

Jane Hornickel; Nina Kraus

Learning to read proceeds smoothly for most children, yet others struggle to translate verbal language into its written form. Poor readers often have a host of auditory, linguistic, and attention deficits, including abnormal neural representation of speech and inconsistent performance on psychoacoustic tasks. We hypothesize that this constellation of deficits associated with reading disorders arises from the human auditory system failing to respond to sound in a consistent manner, and that this inconsistency impinges upon the ability to relate phonology and orthography during reading. In support of this hypothesis, we show that poor readers have significantly more variable auditory brainstem responses to speech than do good readers, independent of resting neurophysiological noise levels. Thus, neural variability may be an underlying biological contributor to well established behavioral and neural deficits found in poor readers.


Behavioral and Brain Functions | 2011

Subcortical processing of speech regularities underlies reading and music aptitude in children

Dana L. Strait; Jane Hornickel; Nina Kraus

BackgroundNeural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities.MethodsWe assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams.ResultsThrough correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music.ConclusionsThese data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Assistive listening devices drive neuroplasticity in children with dyslexia

Jane Hornickel; Steven G. Zecker; Ann R. Bradlow; Nina Kraus

Children with dyslexia often exhibit increased variability in sensory and cognitive aspects of hearing relative to typically developing peers. Assistive listening devices (classroom FM systems) may reduce auditory processing variability by enhancing acoustic clarity and attention. We assessed the impact of classroom FM system use for 1 year on auditory neurophysiology and reading skills in children with dyslexia. FM system use reduced the variability of subcortical responses to sound, and this improvement was linked to concomitant increases in reading and phonological awareness. Moreover, response consistency before FM system use predicted gains in phonological awareness. A matched control group of children with dyslexia attending the same schools who did not use the FM system did not show these effects. Assistive listening devices can improve the neural representation of speech and impact reading-related skills by enhancing acoustic clarity and attention, reducing variability in auditory processing.


Audiology and Neuro-otology | 2009

Subcortical Laterality of Speech Encoding

Jane Hornickel; Erika Skoe; Nina Kraus

It is well established that in the majority of the population language processing is lateralized to the left hemisphere. Evidence suggests that lateralization is also present in the brainstem. In the current study, the syllable /da/ was presented monaurally to the right and left ears and electrophysiological responses from the brainstem were recorded in adults with symmetrical interaural click-evoked responses. Responses to the right-ear presentation occurred earlier than those to left-ear presentation in two peaks of the frequency following response (FFR) and approached significance for the third peak of the FFR and the offset peak. Interestingly, there were no differences in interpeak latencies indicating the response to right-ear presentation simply occurred earlier over this region. Analyses also showed more robust frequency encoding when stimuli were presented to the right ear than the left ear. The effect was found for the harmonics of the fundamental that correspond to the first formant of the stimulus, but was not seen in the fundamental frequency range. The results suggest that left lateralization of processing acoustic elements important for discriminating speech extends to the auditory brainstem and that these effects are speech specific.


Behavioural Brain Research | 2011

Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children.

Jane Hornickel; Bharath Chandrasekaran; Steve Zecker; Nina Kraus

Reading and speech-in-noise perception, fundamental aspects of human communication, have been linked to neural indices of auditory brainstem function. However, how these factors interact is currently unclear. Multivariate analysis methods (structural equation modeling) were employed to delineate and quantify the relationships among factors that relate to successful reading and speech in noise perception in children. Neural measures of subcortical speech encoding that reflect the utilization of stimulus regularities, differentiation of stop consonants, and robustness of neural synchrony predicted 73% of the variance in reading scores. A different combination of neural measures, specifically, utilization of stimulus regularities, strength of encoding of lower harmonics, and the extent of noise-induced timing delays uniquely predicted 56% of the variance in speech-in-noise perception measures. The neural measures relating to reading and speech-in-noise perception were substantially non-overlapping and resulted in poor fitting models when substituted for each other, thereby suggesting distinct neural signatures for the two skills. When phonological processing and working memory measures were added to the models, brainstem measures still uniquely predicted variance in reading ability and speech-in-noise perception, highlighting the robustness of the relationship between subcortical auditory function and these skills. The current study suggests that objective neural markers may prove valuable in the assessment of reading or speech-in-noise abilities in children.


Behavioral and Brain Functions | 2010

Biological changes in auditory function following training in children with autism spectrum disorders

Nicole Russo; Jane Hornickel; Trent Nicol; Steven G. Zecker; Nina Kraus

BackgroundChildren with pervasive developmental disorders (PDD), such as children with autism spectrum disorders (ASD), often show auditory processing deficits related to their overarching language impairment. Auditory training programs such as Fast ForWord Language may potentially alleviate these deficits through training-induced improvements in auditory processing.MethodsTo assess the impact of auditory training on auditory function in children with ASD, brainstem and cortical responses to speech sounds presented in quiet and noise were collected from five children with ASD who completed Fast ForWord training.ResultsRelative to six control children with ASD who did not complete Fast ForWord, training-related changes were found in brainstem response timing (three children) and pitch-tracking (one child), and cortical response timing (all five children) after Fast ForWord use.ConclusionsThese results provide an objective indication of the benefit of training on auditory function for some children with ASD.


Human Brain Mapping | 2008

Neural correlates of orthographic and phonological consistency effects in children

Donald J. Bolger; Jane Hornickel; Nadia E. Cone; Douglas D. Burman; James R. Booth

The objective of this study was to examine the neural correlates of phonological inconsistency (relationship of spelling to sound) and orthographic inconsistency (relationship of sound to spelling) in visual word processing using functional magnetic resonance imaging (fMRI). Children (9‐ to 15‐year‐old) performed a rhyming and spelling task in which two words were presented sequentially in the visual modality. Consistent with previous studies in adults, higher phonological inconsistency was associated with greater activation in several regions including left inferior frontal gyrus and medial frontal gyrus/anterior cingulate cortex. We additionally demonstrated an effect of orthographic inconsistency in these same areas, suggesting that these regions are involved in the integration of orthographic and phonological information and, with respect to the medial frontal/anterior cingulate, greater demands on executive function. Higher phonological and orthographic consistency was associated with greater activation in precuneus/posterior cingulate cortex, the putative steady state system active during resting, suggesting lower demands on cognitive resources for consistent items. Both consistency effects were larger for the rhyming compared with the spelling task suggesting greater demands of integrating spelling and sound in the former task. Finally, accuracy on the rhyming task was negatively correlated with the consistency effect in left fusiform gyrus. In particular, this region showed insensitivity to consistency in low performers, sensitivity to inconsistency (higher activity) in moderate performers, and sensitivity to inconsistency (high activation) and to consistency (deactivation). In general, these results show that the influence of spelling–sound (and sound–spelling) correspondences on processing in fusiform gyrus develops as a function of skill. Hum Brain Mapp, 2008.


Hearing Research | 2012

Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children

Jane Hornickel; Erica Knowles; Nina Kraus

The click-evoked auditory brainstem response (ABR) is widely used in clinical settings, partly due to its predictability and high test-retest consistency. More recently, the speech-evoked ABR has been used to evaluate subcortical processing of complex signals, allowing for the objective assessment of biological processes underlying auditory function and auditory processing deficits not revealed by responses to clicks. Test-retest reliability of some components of speech-evoked ABRs has been shown for adults and children over the course of months. However, a systematic study of the consistency of the speech-evoked brainstem response in school-age children has not been conducted. In the present study, speech-evoked ABRs were collected from 26 typically-developing children (ages 8-13) at two time points separated by one year. ABRs were collected for /da/ presented in quiet and in a 6-talker babble background noise. Test-retest consistency of response timing, spectral encoding, and signal-to-noise ratio was assessed. Response timing and spectral encoding were highly replicable over the course of one year. The consistency of response timing and spectral encoding found for the speech-evoked ABRs of typically-developing children suggests that the speech-evoked ABR may be a unique tool for research and clinical assessment of auditory function, particularly with respect to auditory-based communication skills.

Collaboration


Dive into the Jane Hornickel's collaboration.

Top Co-Authors

Avatar

Nina Kraus

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Trent Nicol

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Erika Skoe

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge