Jane L. Brittan
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jane L. Brittan.
Journal of Bacteriology | 2009
Robin L. Macintosh; Jane L. Brittan; Ritwika Bhattacharya; Howard F. Jenkinson; Jeremy P. Derrick; Mathew Upton; Pauline S. Handley
The opportunistic pathogen Staphylococcus epidermidis colonizes indwelling medical devices by biofilm formation but is primarily a skin resident. In many S. epidermidis strains biofilm formation is mediated by a cell wall-anchored protein, the accumulation-associated protein (Aap). Here, we investigate the role of Aap in skin adhesion. Aap is an LPXTG protein with a domain architecture including a terminal A domain and a B-repeat region. S. epidermidis NCTC 11047 expresses Aap as localized, lateral tufts of fibrils on one subpopulation of cells (Fib(+)), whereas a second subpopulation does not express these fibrils of Aap (Fib(-)). Flow cytometry showed that 72% of NCTC 11047 cells expressed Aap and that 28% of cells did not. Aap is involved in the adhesion of Fib(+) cells to squamous epithelial cells from the hand (corneocytes), as the recombinant A-domain protein partially blocked binding to corneocytes. To confirm the role of the Aap A domain in corneocyte attachment, Aap was expressed on the surface of Lactococcus lactis MG1363 as sparsely distributed, peritrichous fibrils. The expression of Aap increased corneocyte adhesion 20-fold compared to L. lactis carrying Aap without an A domain. S. epidermidis isolates from catheters, artificial joints, skin, and the nose also used the A domain of Aap to adhere to corneocytes, emphasizing the role of Aap in skin adhesion. In addition, L. lactis expressing Aap with different numbers of B repeats revealed a positive correlation between the number of B repeats and adhesion to corneocytes, suggesting an additional function for the B region in enhancing A-domain-dependent attachment to skin. Therefore, in addition to its established role in biofilm formation, Aap can also promote adhesion to corneocytes and is likely to be an important adhesin in S. epidermidis skin colonization.
Molecular Oral Microbiology | 2012
Jane L. Brittan; T.J. Buckeridge; Adam Finn; Aras Kadioglu; Howard F. Jenkinson
Streptococcus pneumoniae colonizes the upper respiratory tract from where the organisms may disseminate systemically to cause life threatening infections. The mechanisms by which pneumococci colonize epithelia are not understood, but neuraminidase A (NanA) has a major role in promoting growth and survival in the upper respiratory tract. In this article we show that mutants of S. pneumoniae D39 deficient in NanA or neuraminidase B (NanB) are abrogated in adherence to three epithelial cell lines, and to primary nasopharyngeal cells. Adherence levels were partly restored by nanA complementation in trans. Enzymic activity of NanA was shown to be necessary for pneumococcal adherence to epithelial cells, and adherence of the nanA mutant was restored to wild-type level by pre-incubation of epithelial cells with Lactococcus lactis cells expressing NanA. Pneumococcal nanA or nanB mutants were deficient in biofilm formation, while expression of NanA on L. lactis or Streptococcus gordonii promoted biofilm formation by these heterologous host organisms. The results suggest that NanA is an enzymic factor mediating adherence to epithelial cells by decrypting receptors for adhesion, and functions at least in part as an adhesin in biofilm formation. Neuraminidase A thus appears to play multiple temporal roles in pneumococcal infection, from adherence to host tissues, colonization, and community development, to systemic spread and crossing of the blood-brain barrier.
Microbiology | 2009
Nicholas S. Jakubovics; Jane L. Brittan; Lindsay C. Dutton; Howard F. Jenkinson
Adhesion of bacterial cells to fibronectin (FN) is thought to be a pivotal step in the pathogenesis of invasive infectious diseases. Viridans group streptococci such as Streptococcus gordonii are considered commensal members of the oral microflora, but are important pathogens in infective endocarditis. S. gordonii expresses a battery of cell-surface adhesins that act alone or in concert to bind host receptors. Here, we employed molecular genetic approaches to determine the relative contributions of five known S. gordonii surface proteins to adherence to human FN. Binding levels to FN by isogenic mutants lacking Hsa glycoprotein were reduced by 70 %, while mutants lacking CshA and CshB fibrillar proteins showed approximately 30 % reduced binding. By contrast, disruption of antigen I/II adhesin genes sspA and sspB in a wild-type background did not result in reduced FN binding. Enzymic removal of sialic acids from FN led to reduced S. gordonii DL1 adhesion (>50 %), but did not affect binding by the hsa mutant, indicating that Hsa interacts with sialic acid moieties on FN. Conversely, desialylation of FN did not affect adherence levels of Lactococcus lactis cells expressing SspA or SspB polypeptides. Complementation of the hsa mutant partially restored adhesion to FN. A model is proposed for FN binding by S. gordonii in which Hsa and CshA/CshB are primary adhesins, and SspA or SspB play secondary roles. Understanding the basis of oral streptococcal interactions with FN will provide a foundation for development of new strategies to control infective endocarditis.
Molecular Microbiology | 2011
Sarah E. Maddocks; Christopher J. Wright; Angela H. Nobbs; Jane L. Brittan; Linda Franklin; Nicklas Strömberg; Aras Kadioglu; Mark A. Jepson; Howard F. Jenkinson
The streptococcal antigen I/II (AgI/II)‐family polypeptides are cell wall‐anchored adhesins expressed by most indigenous oral streptococci. Proteins sharing 30–40% overall amino acid sequence similarities with AgI/II‐family proteins are also expressed by Streptococcus pyogenes. The S. pyogenes M28_Spy1325 polypeptide (designated AspA) displays an AgI/II primary structure, with alanine‐rich (A) and proline‐rich (P) repeats flanking a V region that is projected distal from the cell. In this study it is shown that AspA from serotype M28 S. pyogenes, when expressed on surrogate host Lactococcus lactis, confers binding to immobilized salivary agglutinin gp‐340. This binding was blocked by antibodies to the AspA‐VP region. In contrast, the N‐terminal region of AspA was deficient in binding fluid‐phase gp‐340, and L. lactis cells expressing AspA were not agglutinated by gp‐340. Deletion of the aspA gene from two different M28 strains of S. pyogenes abrogated their abilities to form biofilms on saliva‐coated surfaces. In each mutant strain, biofilm formation was restored by trans complementation of the aspA deletion. In addition, expression of AspA protein on the surface of L. lactis conferred biofilm‐forming ability. Taken collectively, the results provide evidence that AspA is a biofilm‐associated adhesin that may function in host colonization by S. pyogenes.
Molecular Oral Microbiology | 2010
Aras Kadioglu; Hannah Brewin; Tobias Härtel; Jane L. Brittan; Matthias Klein; Sven Hammerschmidt; Howard F. Jenkinson
Summary The pneumococcal cell surface protein PavA is a virulence factor associated with adherence and invasion in vitro. In this study we show in vivo that PavA is necessary for Streptococcus pneumoniae D39 colonization of the murine upper respiratory tract in a long-term carriage model, with PavA-deficient pneumococci being quickly cleared from nasopharyngeal tissue. In a pneumonia model, pavA mutants were not cleared from the lungs of infected mice and persisted to cause chronic infection, whereas wild-type pneumococci caused systemic infection. Hence, under the experimental conditions, PavA-deficient pneumococci appeared to be unable to seed from lung tissue into blood, although they survived in blood when administered intravenously. In a meningitis model of infection, levels of PavA-deficient pneumococci in blood and brain following intercisternal injection were significantly lower than wild type. Taken collectively these results suggest that PavA is involved in successful colonization of mucosal surfaces and in translocation of pneumococci across host barriers. Pneumococcal sepsis is a major cause of mortality worldwide so identification of factors such as PavA that are necessary for carriage and for translocation from tissue to blood is of clinical and therapeutic importance.
Microbes and Infection | 2015
Jane L. Brittan; Angela H. Nobbs
Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia and meningitis, and is responsible for a rising number of severe invasive infections in adults. For all disease manifestations, colonisation is a critical first step. GBS has frequently been isolated from the oropharynx of neonates and adults. However, little is understood about the mechanisms of GBS colonisation at this site. In this study it is shown that three GBS strains (COH1, NEM316, 515) have capacity to adhere to human salivary pellicle. Heterologous expression of GBS pilus island (PI) genes in Lactococcus lactis to form surface-expressed pili demonstrated that GBS PI-2a and PI-1 pili bound glycoprotein-340 (gp340), a component of salivary pellicle. By contrast, PI-2b pili did not interact with gp340. The variation was attributable to differences in capacities for backbone and ancillary protein subunits of each pilus to bind gp340. Furthermore, while GBS strains were aggregated by fluid-phase gp340, this mechanism was not mediated by pili, which displayed specificity for immobilised gp340. Thus pili may enable GBS to colonise the soft and hard tissues of the oropharynx, while evading an innate mucosal defence, with implications for risk of progression to severe diseases such as meningitis and sepsis.
Journal of Applied Oral Science | 2016
Jane L. Brittan; Susan V. Sprague; Emma L Macdonald; Robert M. Love; Howard F. Jenkinson; Nicola X West
ABSTRACT Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF). DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0) to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine.
Cellular Microbiology | 2017
Jennifer A Haworth; Howard F. Jenkinson; Helen Petersen; Catherine R. Back; Jane L. Brittan; Steven W. Kerrigan; Angela H. Nobbs
A range of Streptococcus bacteria are able to interact with blood platelets to form a thrombus (clot). Streptococcus gordonii is ubiquitous within the human oral cavity and amongst the common pathogens isolated from subjects with infective endocarditis. Two cell surface proteins, Hsa and Platelet adherence protein A (PadA), in S. gordonii mediate adherence and activation of platelets. In this study, we demonstrate that PadA binds activated platelets and that an NGR (Asparagine‐Glycine‐Arginine) motif within a 657 amino acid residue N‐terminal fragment of PadA is responsible for this, together with two other integrin‐like recognition motifs RGT and AGD. PadA also acts in concert with Hsa to mediate binding of S. gordonii to cellular fibronectin and vitronectin, and to promote formation of biofilms. Evidence is presented that PadA and Hsa are each reliant on the others active presentation on the bacterial cell surface, suggesting cooperativity in functions impacting both colonization and pathogenesis.
The Lancet | 2017
Jennifer A Haworth; Howard F. Jenkinson; Steve W. Kerrigan; Jane L. Brittan; Angela H. Nobbs
Abstract Background The ability of the oral bacterium Streptococcus gordonii to bind platelets and extracellular matrix (ECM) contributes to its virulence in infective endocarditis. Surface protein PadA has recently been found to be crucial for platelet activation. The hypothesis is that PadA is dependent upon another surface protein (Hsa) for S gordonii to activate platelets and adhere to ECM. We aimed to determine the respective roles of Hsa and PadA in platelet adhesion, and ascertain PadA function in ECM binding. Methods S gordonii DL1 Δ padA and Δ padA Δ hsa knockout mutants were generated by allelic replacement. Mutants were complemented using PadA or Hsa expression plasmids under the control of a nisin-inducible promoter. PadA expression by knockout and knockin strains was confirmed by western immunoblot of cell-wall protein extracts. Platelet adhesion to bacteria was measured under static conditions in a p-nitrophenol assay. Bacterial adhesion to ECM proteins was determined by crystal violet assay. Findings Static platelet adhesion by S gordonii Δ padA mutant was reduced by 30% compared with wild-type. Δ padA Δ hsa was more than 80% reduced in binding platelets. Expression of padA in Δ padA Δ hsa failed to restore any platelet adhesion, whereas expression of hsa in Δ padA Δ hsa mutant restored binding to 70% of wild-type levels. The Δ padA mutant cells were reduced in binding cellular fibronectin by 25% and vitronectin by 60%. Deletion of hsa abrogated vitronectin binding. Complementation of Δ padA Δ hsa with either hsa or padA alone did not restore vitronectin binding. Interpretation PadA requires the presence of Hsa to interact with platelets. PadA has a minor role in binding cellular fibronectin alongside other surface adhesins. In vitronectin binding, Hsa requires the presence of functional PadA for efficient binding. These results suggest that the S gordonii surface-anchored proteins Hsa and PadA work in concert to mediate processes relevant to host colonisation and pathogenesis. Funding Wellcome Trust (grant WT097285MA awarded to JH).
International Endodontic Journal | 2016
Jane L. Brittan; Susan V. Sprague; Sp Huntley; Cn Bell; Howard F. Jenkinson; Robert M. Love