Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane Memmott is active.

Publication


Featured researches published by Jane Memmott.


Science | 2012

The robustness and restoration of a network of ecological networks.

Michael J. O. Pocock; Darren M. Evans; Jane Memmott

Networks of Networks Quantitative networks, such as those represented by food webs, have become an important way of investigating the structure of ecological communities, but thus far only encompass a small subset of species. Pocock et al. (p. 973) have linked seven different types of ecological networks to form a network of networks. They found that although networks varied in their robustness to species loss, they did not strongly co-vary; that is, what happens to one network is unrelated to what happens to another. The networks studied were identified from an agroecosystem in the southwestern UK, a habitat in which biodiversity has suffered substantially. This study succeeded in revealing which species are potential targets for restoration of ecological function in this and other systems. Analysis of seven interconnected networks on a farm reveals that they vary in their fragility, but that they do not covary. Understanding species’ interactions and the robustness of interaction networks to species loss is essential to understand the effects of species’ declines and extinctions. In most studies, different types of networks (such as food webs, parasitoid webs, seed dispersal networks, and pollination networks) have been studied separately. We sampled such multiple networks simultaneously in an agroecosystem. We show that the networks varied in their robustness; networks including pollinators appeared to be particularly fragile. We show that, overall, networks did not strongly covary in their robustness, which suggests that ecological restoration (for example, through agri-environment schemes) benefitting one functional group will not inevitably benefit others. Some individual plant species were disproportionately well linked to many other species. This type of information can be used in restoration management, because it identifies the plant taxa that can potentially lead to disproportionate gains in biodiversity.


Ecology Letters | 2009

Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control

Sarina Macfadyen; Rachel Gibson; Andrew Polaszek; Rebecca J. Morris; Paul G. Craze; Robert Planqué; William Oliver Christian Symondson; Jane Memmott

While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure. Herbivores on organic farms were attacked by more parasitoid species on organic farms than on conventional farms. However, differences in network structure did not translate into differences in robustness to simulated species loss and we found no difference in percentage parasitism (natural pest control) across a variety of host species. Furthermore, a manipulative field experiment demonstrated that the higher species richness of parasitoids on the organic farms did not increase mortality of a novel herbivore used to bioassay ecosystem service. The explanation for these differences is likely to include inherent differences in management strategies and landscape structure between the two farming systems.


Conservation Biology | 2009

Effects of alien plants on insect abundance and biomass: a food-web approach

Ruben Heleno; Ricardo S. Ceia; Jaime A. Ramos; Jane Memmott

The replacement of native plants by alien species is likely to affect other trophic levels, particularly phytophagous insects. Nevertheless, the effect of alien plants on insect biomass has not yet been quantified. Given their critical role in transferring energy from plants to higher trophic levels, if alien plants do affect insect biomass, this could have far-reaching consequences for community structure. We used 35 food webs to evaluate the impacts of alien plants on insect productivity in a native forest in the Azores. Our food webs quantified plants, insect herbivores, and their parasitoids, which allowed us to test the effects of alien plants on species richness and evenness, insect abundance, insect biomass, and food-web structure. Species richness of plants and insects, along with plant species evenness, declined as the level of plant invasion increased. Nevertheless, none of the 4 quantitative food-web descriptors (number of links, link density, connectance, and interaction evenness) varied significantly with plant invasion independent of the size of the food web. Overall, insect abundance was not significantly affected by alien plants, but insect biomass was significantly reduced. This effect was due to the replacement of large insects on native plants with small insects on alien plants. Furthermore, the impact of alien plants was sufficiently severe to invert the otherwise expected pattern of species-richness decline with increased elevation. We predict a decrease in insect productivity by over 67% if conservation efforts fail to halt the invasion of alien plants in the Azores.


Ecology Letters | 2008

Apparent competition can compromise the safety of highly specific biocontrol agents

Luísa G. Carvalheiro; Yvonne M. Buckley; Rita Ventim; Simon V. Fowler; Jane Memmott

Despite current concern about the safety of biological control of weeds, assessing the indirect impacts of introduced agents is not common practice. Using 17 replicate food webs, we demonstrate that the use of a highly host-plant specific weed biocontrol agent, recently introduced into Australia, is associated with declines of local insect communities. The agent shares natural enemies (predators and parasitoids) with seed herbivore species from native plants, so apparent competition is the most likely cause for these losses. Both species richness and abundance in insect communities (seed herbivores and their parasitoids) were negatively correlated with the abundance of the biocontrol agent. Local losses of up to 11 species (dipteran seed herbivores and parasitoids) took place as the biocontrol agent abundance increased. Ineffective biocontrol agents that remain highly abundant in the community are most likely to have persistent, indirect negative effects. Our findings suggest that more investment is required in pre-release studies on the effectiveness of biocontrol agents, as well as in post-release studies assessing indirect impacts, to avoid or minimize the release of potentially damaging species.


Ecological Applications | 2009

Evaluation of restoration effectiveness: community response to the removal of alien plants

Ruben Heleno; InÊs Lacerda; Jaime A. Ramos; Jane Memmott

Plant invasions are a key cause of biodiversity loss and motivate many restoration programs worldwide. We assessed restoration success of an invaded forest in the Azores using two complementary experimental designs: a before-after control-impact (BACI) design compared a restored and a control (unmanipulated) site over three years, while a control-impact (CI) design evaluated the short-term effects of restoration on restored-control replicated pairs. In both designs, a food web approach was used to evaluate both structural and functional aspects of the restoration. Two years after removing alien plants from the BACI design, there were increases in the abundance of native seeds (110%), herbivorous insects (85%), insect parasitoids (5%), and birds (7%) in the experimental plot compared to the unmanipulated plot. In the CI design, five experimental plots were weeded and paired with five adjacent unmanipulated plots. Immediately following the removal of alien plants within the experimental plots, there was a significant decrease in native plant species, likely attributed to the effect of disturbance. Nevertheless, the production of native seeds increased by 35% in year 1, and seed production of the focal endemic plant, Ilex perado (holly), increased 159% in year 2. Weeding increased the survivorship and growth of seedlings transplanted into the plots, particularly those of alien species. Both experiments provide evidence of the positive effects of weeding cascading through the food web from native plants to herbivorous insects, insect parasitoids, and birds. Two aspects that could prove critical to the outcome of restoration programs deserve further attention: most bird-dispersed seeds were alien, and weeding favored alien over native seedling growth.


Ecology Letters | 2013

The robustness of a network of ecological networks to habitat loss.

Darren M. Evans; Michael J. O. Pocock; Jane Memmott

There have been considerable advances in our understanding of the tolerance of species interaction networks to sequential extinctions of plants and animals. However, communities of species exist in a mosaic of habitats, and the vulnerability of habitats to anthropogenic change varies. Here, we model the cascading effects of habitat loss, driven by plant extinctions, on the robustness of multiple animal groups. Our network is constructed from empirical observations of 11 animal groups in 12 habitats on farmland. We simulated sequential habitat removal scenarios: randomly; according to prior information; and with a genetic algorithm to identify best- and worst-case permutations of habitat loss. We identified two semi-natural habitats (waste ground and hedgerows together comprising < 5% of the total area of the farm) as disproportionately important to the integrity of the overall network. Our approach provides a new tool for network ecologists and for directing the management and restoration of multiple-habitat sites.


Ecology | 2010

Diet breadth influences how the impact of invasive plants is propagated through food webs

Luísa G. Carvalheiro; Yvonne M. Buckley; Jane Memmott

Invasive plants are considered a major cause of ecosystem degradation worldwide. While their impacts on native plants have been widely reported, there is little information on how these impacts propagate through food webs and affect species at higher trophic levels. Using a quantitative food web approach we evaluated the impacts of an invasive plant on plant-herbivore-parasitoid communities, asking specifically how diet breadth influences the propagation of such impacts. Measuring the impact of the alien plant at the plant level seriously underestimated the community-level effect of this weed as it also caused changes in the abundance of native herbivores and parasitoids, along with a decrease in parasitoid species richness. The invading plant affected specialist and generalist subsets of communities differently, having significant and strong negative impacts on the abundance of all specialists with no negative effect on generalist consumers. Specialist consumer decline led to further disruptions of top-down regulatory mechanisms, releasing generalist species from competition via shared natural enemies. Plant invasion also significantly increased the evenness of species abundance of all trophic levels in the food webs, as well as the evenness of species interaction frequency. Extending impact evaluation to higher trophic levels and considering changes in trophic diversity within levels is hence essential for a full evaluation of the consequences of invasion by alien plants. Moreover, information on diet breadth of species in the invaded community should be taken into account when evaluating/predicting the impacts on any introduced species.


Ecological Entomology | 2005

The relationship between the abundances of bumblebees and honeybees in a native habitat

Mikael Lytzau Forup; Jane Memmott

Abstract.u2002 1. The western honeybee, Apis mellifera, has been introduced to many parts of the world and is sometimes purported to be detrimental to native bees because it reduces their food base. It is seldom viewed in this light in Europe; however, when beekeepers maintain very high bee densities, the species could also be displacing insects in its native European range by reducing the resource base.


Ecology | 2009

The restoration of parasites, parasitoids, and pathogens to heathland communities

Kate S. E. Henson; Paul G. Craze; Jane Memmott

Higher trophic level species such as parasites, parasitoids, and pathogens are frequently ignored in community studies, despite playing key roles in the structure, function, and stability of ecological communities. Furthermore, such species are typically among the last in a community to reestablish due to their reliance upon lower trophic level resources and a requirement for persistent, stable ecological conditions. Consequently their presence alone can be indicative of healthy ecosystems. Using replicated, quantitative food webs we studied the impacts of a restoration treatment upon the interactions of a tri-trophic community consisting of plants, their bumble bee pollinators, and the parasites, parasitoids, and pathogens of the bumble bees at heathland sites. We found the lower trophic levels of the community successfully reinstated at restored relative to control sites. However the abundance, load per host, prevalence of parasitism, prevalence of superparasitism, and host range of a key dipteran parasitoid of the family Conopidae were all significantly reduced in restored heathlands. Potential causes for this incomplete reestablishment at restored sites include the lag in floral resources due to differences in floral species composition, and the reduced ability of this parasitoid species in accessing host resources relative to other natural enemy species present in these communities. Moreover the incomplete reinstatement of the natural enemy community was found to significantly reduce levels of network vulnerability (a measure of how vulnerable prey is to being consumed) at restored sites relative to ancient, control networks.


Ecological Applications | 2011

Landscape structure influences modularity patterns in farm food webs: consequences for pest control

Sarina Macfadyen; Rachel Gibson; William Oliver Christian Symondson; Jane Memmott

Landscape management affects species interactions within a community, leading to alterations in the structure of networks. Modules are link‐dense regions of the network where species interact more closely within the module than between modules of the network. Insufficient network resolution has meant that modules have proved difficult to identify, even though they appear important in the propagation of disturbance impacts. We applied a standardized approach across 20 farms to obtain well‐resolved food webs to characterize network structure and explore how modularity changes in response to management (organic and conventional). All networks showed significantly higher modularity than random networks. Farm management had no effect on the number of modules per farm or module richness, but there was a significant loss of links between modules on conventional farms, which may affect the long‐term stability of these networks. We found a significant association between modules and major habitat groups. If modules form as a result of interactions between species that utilize similar habitats, then ecosystem services to the crop components of the landscape, such as pest control by parasitoids originating in the non‐crop vegetation, are less likely to occur on these farms.

Collaboration


Dive into the Jane Memmott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge