Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane Synnergren is active.

Publication


Featured researches published by Jane Synnergren.


Toxicological Sciences | 2011

Human Embryonic Stem Cell Derived Hepatocyte-Like Cells as a Tool for In Vitro Hazard Assessment of Chemical Carcinogenicity

Reha Yildirimman; Gabriella Brolén; Mireia Vilardell; Gustav Eriksson; Jane Synnergren; Hans Gmuender; Atanas Kamburov; Magnus Ingelman-Sundberg; José V. Castell; Agustín Lahoz; Jos Kleinjans; Joost H.M. van Delft; Petter Björquist; Ralf Herwig

Hepatocyte-like cells derived from the differentiation of human embryonic stem cells (hES-Hep) have potential to provide a human relevant in vitro test system in which to evaluate the carcinogenic hazard of chemicals. In this study, we have investigated this potential using a panel of 15 chemicals classified as noncarcinogens, genotoxic carcinogens, and nongenotoxic carcinogens and measured whole-genome transcriptome responses with gene expression microarrays. We applied an ANOVA model that identified 592 genes highly discriminative for the panel of chemicals. Supervised classification with these genes achieved a cross-validation accuracy of > 95%. Moreover, the expression of the response genes in hES-Hep was strongly correlated with that in human primary hepatocytes cultured in vitro. In order to infer mechanistic information on the consequences of chemical exposure in hES-Hep, we developed a computational method that measures the responses of biochemical pathways to the panel of treatments and showed that these responses were discriminative for the three toxicity classes and linked to carcinogenesis through p53, mitogen-activated protein kinases, and apoptosis pathway modules. It could further be shown that the discrimination of toxicity classes was improved when analyzing the microarray data at the pathway level. In summary, our results demonstrate, for the first time, the potential of human embryonic stem cell--derived hepatic cells as an in vitro model for hazard assessment of chemical carcinogenesis, although it should be noted that more compounds are needed to test the robustness of the assay.


Physiological Genomics | 2012

Global transcriptional profiling reveals similarities and differences between human stem cell-derived cardiomyocyte clusters and heart tissue

Jane Synnergren; Caroline Améen; Andreas Jansson; Peter Sartipy

It is now well documented that human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes. These cells constitute a promising source of material for use in drug development, toxicity testing, and regenerative medicine. To assess their utility as replacement or complement to existing models, extensive phenotypic characterization of the cells is required. In the present study, we used microarrays and analyzed the global transcription of hESC-derived cardiomyocyte clusters (CMCs) and determined similarities as well as differences compared with reference samples from fetal and adult heart tissue. In addition, we performed a focused analysis of the expression of cardiac ion channels and genes involved in the Ca(2+)-handling machinery, which in previous studies have been shown to be immature in stem cell-derived cardiomyocytes. Our results show that hESC-derived CMCs, on a global level, have a highly similar gene expression profile compared with human heart tissue, and their transcriptional phenotype was more similar to fetal than to adult heart. Despite the high similarity to heart tissue, a number of significantly differentially expressed genes were identified, providing some clues toward understanding the molecular difference between in vivo sourced tissue and stem cell derivatives generated in vitro. Interestingly, some of the cardiac-related ion channels and Ca(2+)-handling genes showed differential expression between the CMCs and heart tissues. These genes may represent candidates for future genetic engineering to create hESC-derived CMCs that better mimic the phenotype of the cardiomyocytes present in the adult human heart.


Drug Metabolism and Disposition | 2014

Long-Term Chronic Toxicity Testing Using Human Pluripotent Stem Cell–Derived Hepatocytes

Gustav Holmgren; Anna-Karin Sjögren; Isabel Barragan; Alan Sabirsh; Peter Sartipy; Jane Synnergren; Petter Björquist; Magnus Ingelman-Sundberg; Tommy B. Andersson; Josefina Edsbagge

Human pluripotent stem cells (hPSC) have the potential to become important tools for the establishment of new models for in vitro drug testing of, for example, toxicity and pharmacological effects. Late-stage attrition in the pharmaceutical industry is to a large extent caused by selection of drug candidates using nonpredictive preclinical models that are not clinically relevant. The current hepatic in vivo and in vitro models show clear limitations, especially for studies of chronic hepatotoxicity. For these reasons, we evaluated the potential of using hPSC-derived hepatocytes for long-term exposure to toxic drugs. The differentiated hepatocytes were incubated with hepatotoxic compounds for up to 14 days, using a repeated-dose approach. The hPSC-derived hepatocytes became more sensitive to the toxic compounds after extended exposures and, in addition to conventional cytotoxicity, evidence of phospholipidosis and steatosis was also observed in the cells. This is, to the best of our knowledge, the first report of a long-term toxicity study using hPSC-derived hepatocytes, and the observations support further development and validation of hPSC-based toxicity models for evaluating novel drugs, chemicals, and cosmetics.


Stem Cells and Development | 2013

Hepatic Differentiation and Maturation of Human Embryonic Stem Cells Cultured in a Perfused Three-Dimensional Bioreactor

Louise Sivertsson; Jane Synnergren; Janne Jensen; Petter Björquist; Magnus Ingelman-Sundberg

Drug-induced liver injury is a serious and frequently occurring adverse drug reaction in the clinics and is hard to predict during preclinical studies. Today, primary hepatocytes are the most frequently used cell model for drug discovery and prediction of toxicity. However, their use is marred by high donor variability regarding drug metabolism and toxicity, and instable expression levels of liver-specific genes such as cytochromes P450. An in vitro model system based on human embryonic stem cells (hESC), with their unique properties of pluripotency and self-renewal, has potential to provide a stable and unlimited supply of human hepatocytes. Much effort has been made to direct hESC toward the hepatic lineage, mostly using 2-dimensional (2D) cultures. Although the results are encouraging, these cells lack important functionality. Here, we investigate if hepatic differentiation of hESC can be improved by using a 3-dimensional (3D) bioreactor system. Human ESCs were differentiated toward the hepatic lineage using the same cells in either the 3D or 2D system. A global transcriptional analysis identified important differences between the 2 differentiation regimes, and we identified 10 pathways, highly related to liver functions, which were significantly upregulated in cells differentiated in the bioreactor compared to 2D control cultures. The enhanced hepatic differentiation observed in the bioreactor system was also supported by immunocytochemistry. Taken together, our results suggest that hepatic differentiation of hESC is improved when using this 3D bioreactor technology as compared to 2D culture systems.


Toxicology | 2015

Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells

Gustav Holmgren; Jane Synnergren; Yalda Bogestål; Caroline Améen; Karolina Åkesson; Sandra Holmgren; Anders Lindahl; Peter Sartipy

Doxorubicin is a chemotherapeutic agent indicated for the treatment of a variety of cancer types, including leukaemia, lymphomas, and many solid tumours. The use of doxorubicin is, however, associated with severe cardiotoxicity, often resulting in early discontinuation of the treatment. Importantly, the toxic symptoms can occur several years after the termination of the doxorubicin administration. In this study, the toxic effects of doxorubicin exposure have been investigated in cardiomyocytes derived from human embryonic stem cells (hESC). The cells were exposed to different concentrations of doxorubicin for up to 2 days, followed by a 12 day recovery period. Notably, the cell morphology was altered during drug treatment and the cells showed a reduced contractile ability, most prominent at the highest concentration of doxorubicin at the later time points. A general cytotoxic response measured as Lactate dehydrogenase leakage was observed after 2 days’ exposure compared to the vehicle control, but this response was absent during the recovery period. A similar dose-dependant pattern was observed for the release of cardiac specific troponin T (cTnT) after 1 day and 2 days of treatment with doxorubicin. Global transcriptional profiles in the cells revealed clusters of genes that were differentially expressed during doxorubicin exposure, a pattern that in some cases was sustained even throughout the recovery period, suggesting that these genes could be used as sensitive biomarkers for doxorubicin-induced toxicity in human cardiomyocytes. The results from this study show that cTnT release can be used as a measurement of acute cardiotoxicity due to doxorubicin. However, for the late onset of doxorubicin-induced cardiomyopathy, cTnT release might not be the most optimal biomarker. As an alternative, some of the genes that we identified as differentially expressed after doxorubicin exposure could serve as more relevant biomarkers, and may also help to explain the cellular mechanisms behind the late onset apoptosis associated with doxorubicin-induced cardiomyopathy.


Physiological Genomics | 2011

Expression of microRNAs and their target mRNAs in human stem cell-derived cardiomyocyte clusters and in heart tissue

Jane Synnergren; Caroline Améen; Anders Lindahl; Björn Olsson; Peter Sartipy

Recent studies have shown that microRNAs (miRNAs) act as posttranscriptional regulators and that they play important roles during heart development and in cardiac function. Thus, they may provide new means of altering stem cell fate and differentiation processes. However, information about the correlation between global miRNA and mRNA expression in cardiomyocyte clusters (CMCs) derived from human embryonic stem cells (hESC) and in fetal and adult heart tissue is lacking. In the present study the global miRNA and mRNA expression in hESC-derived CMCs and in fetal and adult heart tissue was investigated in parallel using microarrays. Target genes for the differentially expressed miRNAs were predicted using computational methods, and the concordance in miRNA expression and mRNA levels of potential target genes was determined across the experimental samples. The biology of the predicted target genes was further explored regarding their molecular functions and involvement in known regulatory pathways. A clear correlation between the global miRNA expression and corresponding target mRNA expression was observed. Using three different sources of cardiac tissue-like samples, we defined the similarities between in vitro hESC-derived CMCs and their in vivo counterparts. The results are in line with previously reported observations that miRNAs repress mRNA expression and additionally identify a number of novel miRNAs with potential important roles in human cardiac tissue. The concordant miRNA expression pattern observed among all the cardiac tissue-like samples analyzed here provide a starting point for future ambitious studies aiming towards assessment of the functional roles of specific miRNAs during cardiomyocyte differentiation.


Physiological Genomics | 2012

Comparison of human cardiac gene expression profiles in paired samples of right atrium and left ventricle collected in vivo

Julia Asp; Jane Synnergren; Marianne Jonsson; Göran Dellgren; Anders Jeppsson

Studies of expressed genes in human heart provide insight into both physiological and pathophysiological mechanisms. This is of importance for extended understanding of cardiac function as well as development of new therapeutic drugs. Heart tissue for gene expression studies is generally hard to obtain, particularly from the ventricles. Since different parts of the heart have different functions, expression profiles should likely differ between these parts. The aim of the study was therefore to compare the global gene expression in cardiac tissue from the more accessible auricula of the right atrium to expression in tissue from the left ventricle. Tissue samples were collected from five men undergoing aortic valve replacement or coronary artery bypass grafting. Global gene expression analysis identified 542 genes as differentially expressed between the samples extracted from these two locations, corresponding to ~2% of the genes covered by the microarray; 416 genes were identified as abundantly expressed in right atrium, and 126 genes were abundantly expressed in left ventricle. Further analysis of the differentially expressed genes according to available annotations, information from curated pathways and known protein interactions, showed that genes with higher expression in the ventricle were mainly associated with contractile work of the heart. Transcription in biopsies from the auricula of the right atrium on the other hand indicated a wider area of functions, including immunity and defense. In conclusion, our results suggest that biopsies from the auricula of the right atrium may be suitable for various genetic studies, but not studies directly related to muscle work.


Stem Cells and Development | 2010

Transcriptional profiling of human embryonic stem cells differentiating to definitive and primitive endoderm and further toward the hepatic lineage.

Jane Synnergren; Nico Heins; Gabriella Brolén; Gustav Eriksson; Anders Lindahl; Johan Hyllner; Björn Olsson; Peter Sartipy; Petter Björquist

Human embryonic stem cells (hESC) can differentiate into a variety of specialized cell types, and they constitute a useful model system to study embryonic development in vitro. In order to fully utilize the potential of these cells, the mechanisms that regulate the developmental processes of specific lineage differentiation need to be better defined. The aim of this study was to explore the molecular program involved in the differentiation of hESC toward definitive endoderm (DE) and further into the hepatic lineage, and to compare that with primitive endoderm (PrE) differentiation. To that end, we applied two protocols: a specific DE differentiation protocol and an intrinsic differentiation protocol that mainly mediates PrE formation. We collected hESC, hESC-derived DE, DE-derived hepatocyte-progenitors (DE-Prog), DE-derived hepatocyte-like cells (DE-Hep), and the corresponding PrE derivatives. The samples were analyzed using microarrays, and we identified sets of genes that were exclusively up-regulated in DE derivatives (compared to PrE derivatives) at discrete developmental stages. We also investigated known protein interactions among the set of up-regulated genes in DE-Hep. The results demonstrate important differences between DE and PrE differentiation on the transcriptional level. In particular, our results identify a unique molecular program, exclusively activated during development of DE and the subsequent differentiation of DE toward the hepatic lineage. We identified key genes and pathways of potential importance for future efforts to improve hepatic differentiation from hESC. These results reveal new opportunities for rational design of specific interventions with the purpose of generating enriched populations of DE derivatives, including functional hepatocytes.


Toxicology in Vitro | 2016

MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity.

Gustav Holmgren; Jane Synnergren; Christian X. Andersson; Anders Lindahl; Peter Sartipy

Anthracyclines, such as doxorubicin, are well-established, highly efficient anti-neoplastic drugs used for treatment of a variety of cancers, including solid tumors, leukemia, lymphomas, and breast cancer. The successful use of doxorubicin has, however, been hampered by severe cardiotoxic side-effects. In order to prevent or reverse negative side-effects of doxorubicin, it is important to find early biomarkers of heart injury and drug-induced cardiotoxicity. The high stability under extreme conditions, presence in various body fluids, and tissue-specificity, makes microRNAs very suitable as clinical biomarkers. The present study aimed towards evaluating the early and late effects of doxorubicin on the microRNA expression in cardiomyocytes derived from human pluripotent stem cells. We report on several microRNAs, including miR-34a, miR-34b, miR-187, miR-199a, miR-199b, miR-146a, miR-15b, miR-130a, miR-214, and miR-424, that are differentially expressed upon, and after, treatment with doxorubicin. Investigation of the biological relevance of the identified microRNAs revealed connections to cardiomyocyte function and cardiotoxicity, thus supporting the findings of these microRNAs as potential biomarkers for drug-induced cardiotoxicity.


Stem Cells International | 2016

Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

Nidal Ghosheh; Björn Olsson; Josefina Edsbagge; Barbara Küppers-Munther; Mariska van Giezen; Annika Asplund; Tommy B. Andersson; Petter Björquist; Helena Carén; Stina Simonsson; Peter Sartipy; Jane Synnergren

Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models.

Collaboration


Dive into the Jane Synnergren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Lindahl

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karolina Åkesson

Sahlgrenska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge