Jane Vowles
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jane Vowles.
Stem cell reports | 2016
Hugo J.R. Fernandes; Elizabeth M. Hartfield; Helen Christian; Evangelia Emmanoulidou; Ying Zheng; Heather D.E. Booth; Helle Bogetofte; Charmaine Lang; Brent J. Ryan; S. Pablo Sardi; Jennifer Badger; Jane Vowles; Samuel Evetts; George K. Tofaris; Kostas Vekrellis; Kevin Talbot; Michele Hu; William James; Sally A. Cowley; Richard Wade-Martins
Summary Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinsons disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets.
PLOS ONE | 2014
Elizabeth M. Hartfield; Michiko Yamasaki-Mann; Hugo J.R. Fernandes; Jane Vowles; William James; Sally A. Cowley; Richard Wade-Martins
Human induced pluripotent stem cells (hiPSCs) offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson’s disease (PD), in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH) and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2), representative of the A9 population of substantia nigra pars compacta (SNc) neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz) and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3) receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+) which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.
PLOS ONE | 2013
Bonnie van Wilgenburg; Cathy Browne; Jane Vowles; Sally A. Cowley
Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC) and multiple human induced Pluripotent Stem Cell (hiPSC) lines over time periods of up to one year. Cumulatively, up to ∼3×107 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14+, CD16low, CD163+). Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology.
Stem Cells | 2016
Ruxandra Dafinca; Jakub Scaber; Nida'a Ababneh; Tatjana Lalic; Gregory Weir; Helen Christian; Jane Vowles; Andrew G.L. Douglas; Alexandra Fletcher‐Jones; Cathy Browne; Mahito Nakanishi; Martin Turner; Richard Wade-Martins; Sally A. Cowley; Kevin Talbot
An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC‐derived motor neurons, decreased cell survival is correlated with dysfunction in Ca2+ homeostasis, reduced levels of the antiapoptotic protein Bcl‐2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC‐derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063–2078
Stem Cells | 2016
Ruxandra Dafinca; Jakub Scaber; Nida'a Ababneh; Tatjana Lalic; Gregory Weir; Helen Christian; Jane Vowles; Andrew G.L. Douglas; Alexandra Fletcher‐Jones; Cathy Browne; Mahito Nakanishi; Martin Turner; Richard Wade-Martins; Sally A. Cowley; Kevin Talbot
An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC‐derived motor neurons, decreased cell survival is correlated with dysfunction in Ca2+ homeostasis, reduced levels of the antiapoptotic protein Bcl‐2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC‐derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063–2078
Human Molecular Genetics | 2016
Adam E. Handel; S Chintawar; Tatjana Lalic; E Whiteley; Jane Vowles; Alice Giustacchini; K Argoud; P. Sopp; Mahito Nakanishi; Rory Bowden; Sally A. Cowley; Sarah E. Newey; Colin J. Akerman; Chris P. Ponting; M Z Cader
Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells.
Human Molecular Genetics | 2017
Cynthia Sandor; Paul Robertson; Charmaine Lang; Andreas Heger; Heather D.E. Booth; Jane Vowles; Lorna Witty; Rory Bowden; Michele Hu; Sally A. Cowley; Richard Wade-Martins; Caleb Webber
&NA; While induced pluripotent stem cell (iPSC) technologies enable the study of inaccessible patient cell types, cellular heterogeneity can confound the comparison of gene expression profiles between iPSC‐derived cell lines. Here, we purified iPSC‐derived human dopaminergic neurons (DaNs) using the intracellular marker, tyrosine hydroxylase. Once purified, the transcriptomic profiles of iPSC‐derived DaNs appear remarkably similar to profiles obtained from mature post‐mortem DaNs. Comparison of the profiles of purified iPSC‐derived DaNs derived from Parkinsons disease (PD) patients carrying LRRK2 G2019S variants to controls identified significant functional convergence amongst differentially‐expressed (DE) genes. The PD LRRK2‐G2019S associated profile was positively matched with expression changes induced by the Parkinsonian neurotoxin rotenone and opposed by those induced by clioquinol, a compound with demonstrated therapeutic efficacy in multiple PD models. No functional convergence amongst DE genes was observed following a similar comparison using non‐purified iPSC‐derived DaN‐containing populations, with cellular heterogeneity appearing a greater confound than genotypic background.
Analytical Chemistry | 2017
A Baud; F Wessely; F Mazzacuva; J McCormick; S Camuzeaux; W E Heywood; D Little; Jane Vowles; M Tuefferd; O Mosaku; Majlinda Lako; Lyle Armstrong; Caleb Webber; M Z Cader; P Peeters; P Gissen; Sally A. Cowley; K Mills
Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.
Stem cell reports | 2017
Joel E. Beevers; Mang Ching Lai; Emma Collins; Heather D.E. Booth; Federico Zambon; Laura Parkkinen; Jane Vowles; Sally A. Cowley; Richard Wade-Martins; Tara M. Caffrey
Summary The H1 haplotype of the microtubule-associated protein tau (MAPT) locus is genetically associated with neurodegenerative diseases, including Parkinsons disease (PD), and affects gene expression and splicing. However, the functional impact on neurons of such expression differences has yet to be fully elucidated. Here, we employ extended maturation phases during differentiation of induced pluripotent stem cells (iPSCs) into mature dopaminergic neuronal cultures to obtain cultures expressing all six adult tau protein isoforms. After 6 months of maturation, levels of exon 3+ and exon 10+ transcripts approach those of adult brain. Mature dopaminergic neuronal cultures display haplotype differences in expression, with H1 expressing 22% higher levels of MAPT transcripts than H2 and H2 expressing 2-fold greater exon 3+ transcripts than H1. Furthermore, knocking down adult tau protein variants alters axonal transport velocities in mature iPSC-derived dopaminergic neuronal cultures. This work links haplotype-specific MAPT expression with a biologically functional outcome relevant for PD.
Nucleic Acids Research | 2016
Pilar Vazquez-Arango; Jane Vowles; Cathy Browne; Elizabeth M. Hartfield; Hugo J.R. Fernandes; Berhan Mandefro; Dhruv Sareen; William James; Richard Wade-Martins; Sally A. Cowley; Shona Murphy; Dawn O'Reilly
The U1 small nuclear (sn)RNA (U1) is a multifunctional ncRNA, known for its pivotal role in pre-mRNA splicing and regulation of RNA 3′ end processing events. We recently demonstrated that a new class of human U1-like snRNAs, the variant (v)U1 snRNAs (vU1s), also participate in pre-mRNA processing events. In this study, we show that several human vU1 genes are specifically upregulated in stem cells and participate in the regulation of cell fate decisions. Significantly, ectopic expression of vU1 genes in human skin fibroblasts leads to increases in levels of key pluripotent stem cell mRNA markers, including NANOG and SOX2. These results reveal an important role for vU1s in the control of key regulatory networks orchestrating the transitions between stem cell maintenance and differentiation. Moreover, vU1 expression varies inversely with U1 expression during differentiation and cell re-programming and this pattern of expression is specifically de-regulated in iPSC-derived motor neurons from Spinal Muscular Atrophy (SMA) type 1 patients. Accordingly, we suggest that an imbalance in the vU1/U1 ratio, rather than an overall reduction in Uridyl-rich (U)-snRNAs, may contribute to the specific neuromuscular disease phenotype associated with SMA.