Janel R. McLean
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janel R. McLean.
PLOS Biology | 2010
Ilektra Kouranti; Janel R. McLean; Anna Feoktistova; Ping Liang; Alyssa E. Johnson; Rachel H. Roberts-Galbraith; Kathleen L. Gould
Proteomic, localization, and enzymatic activity screens in fission yeast reveal how deubiquitinating enzyme localization and function are tuned.
Current Biology | 2011
N. Sadananda Singh; Nan Shao; Janel R. McLean; Mayalagu Sevugan; Liping Ren; Ting Gang Chew; Andrea Bimbo; R. P. Sharma; Xie Tang; Kathleen L. Gould; Mohan K. Balasubramanian
BACKGROUND Cytokinesis in many eukaryotes involves the function of an actomyosin-based contractile ring. In fission yeast, actomyosin ring maturation and stability require a conserved signaling pathway termed the SIN (septation initiation network). The SIN consists of a GTPase (Spg1p) and three protein kinases, all of which localize to the mitotic spindle pole bodies (SPBs). Two of the SIN kinases, Cdc7p and Sid1p, localize asymmetrically to the newly duplicated SPB in late anaphase. How this asymmetry is achieved is not understood, although it is known that their symmetric localization impairs cytokinesis. RESULTS Here we characterize a new Forkhead-domain-associated protein, Csc1p, and identify SIN-inhibitory PP2A complex (SIP), which is crucial for the establishment of SIN asymmetry. Csc1p localizes to both SPBs early in mitosis, is lost from the SPB that accumulates Cdc7p, and instead accumulates at the SPB lacking Cdc7p. Csc1p is required for the dephosphorylation of the SIN scaffolding protein Cdc11p and is thereby required for the recruitment of Byr4p, a component of the GTPase-activating subunit for Spg1p, to the SPB. CONCLUSIONS Because Cdc7p does not bind to GDP-Spg1p, we propose that the SIP-mediated Cdc11p dephosphorylation and the resulting recruitment of Byr4p are among the earliest steps in the establishment of SIN asymmetry.
Oncogene | 2012
Vijay Walia; Yang Yu; Deshou Cao; Miao Sun; Janel R. McLean; Brett G. Hollier; Ji-Ming Cheng; Sendurai A. Mani; Krishna Rao; Louis S. Premkumar; Randolph C. Elble
Transition between epithelial and mesenchymal states is a feature of both normal development and tumor progression. We report that expression of chloride channel accessory protein hCLCA2 is a characteristic of epithelial differentiation in the immortalized MCF10A and HMLE models, while induction of epithelial-to-mesenchymal transition by cell dilution, TGFβ or mesenchymal transcription factors sharply reduces hCLCA2 levels. Attenuation of hCLCA2 expression by lentiviral small hairpin RNA caused cell overgrowth and focus formation, enhanced migration and invasion, and increased mammosphere formation in methylcellulose. These changes were accompanied by downregulation of E-cadherin and upregulation of mesenchymal markers such as vimentin and fibronectin. Moreover, hCLCA2 expression is greatly downregulated in breast cancer cells with a mesenchymal or claudin-low profile. These observations suggest that loss of hCLCA2 may promote metastasis. We find that higher-than-median expression of hCLCA2 is associated with a one-third lower rate of metastasis over an 18-year period among breast cancer patients compared with lower-than-median (n=344, unfiltered for subtype). Thus, hCLCA2 is required for epithelial differentiation, and its loss during tumor progression contributes to metastasis. Overexpression of hCLCA2 has been reported to inhibit cell proliferation and is accompanied by increases in chloride current at the plasma membrane and reduced intracellular pH (pHi). We found that knockdown cells have sharply reduced chloride current and higher pHi, both characteristics of tumor cells. These results suggest a mechanism for the effects on differentiation. Loss of hCLCA2 may allow escape from pHi homeostatic mechanisms, permitting the higher intracellular and lower extracellular pH that are characteristic of aggressive tumor cells.
PLOS ONE | 2011
Liping Ren; Janel R. McLean; Tony R. Hazbun; Stanley Fields; Craig W. Vander Kooi; Melanie D. Ohi; Kathleen L. Gould
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1∶1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold.
Current Biology | 2013
Sneha Gupta; Sebastian Mana-Capelli; Janel R. McLean; Chun-Ti Chen; Samriddha Ray; Kathleen L. Gould; Dannel McCollum
The septum initiation network (SIN) regulates multiple functions during late mitosis to ensure successful completion of cytokinesis in Schizosaccharomyces pombe. One mechanism by which the SIN promotes cytokinesis is by inhibiting a competing polarity pathway called the MOR, which is required for initiation of polarized growth following completion of cytokinesis. Mutual antagonism between the two NDR kinase pathways, SIN and MOR, is required to coordinate cytoskeletal rearrangements during the mitosis-interphase transition. To determine how the SIN regulates the MOR pathway, we developed a proteomics approach that allowed us to identify multiple substrates of the SIN effector kinase Sid2, including the MOR pathway components Nak1 kinase and an associated protein, Sog2. We show that Sid2 phosphorylation of Nak1 causes removal of Nak1 from the spindle pole bodies, which may both relieve Nak1 inhibition of the SIN and block MOR signaling by preventing interaction of Nak1 with the scaffold protein Mor2. Because the SIN and MOR are conserved in mammalian cells (Hippo and Ndr1/2 pathways, respectively), this work may provide important insight into how the activities of these essential pathways are coordinated.
Molecular & Cellular Proteomics | 2012
Hanhui Ma; Janel R. McLean; Lucy Fang-I Chao; Sebastian Mana-Capelli; Murugan Paramasivam; Kirsten Hagstrom; Kathleen L. Gould; Dannel McCollum
Determining the localization, binding partners, and secondary modifications of individual proteins is crucial for understanding protein function. Several tags have been constructed for protein localization or purification under either native or denaturing conditions, but few tags permit all three simultaneously. Here, we describe a multifunctional tandem affinity purification (MAP) method that is both highly efficient and enables protein visualization. The MAP tag utilizes affinity tags inserted into an exposed surface loop of mVenus offering two advantages: (1) mVenus fluorescence can be used for protein localization or FACS-based selection of cell lines; and (2) spatial separation of the affinity tags from the protein results in high recovery and reduced variability between proteins. MAP purification was highly efficient in multiple organisms for all proteins tested. As a test case, MAP combined with liquid chromatography-tandem MS identified known and new candidate binding partners and modifications of the kinase Plk1. Thus the MAP tag is a new powerful tool for determining protein modification, localization, and interactions.
Molecular & Cellular Proteomics | 2013
Jun-Song Chen; Matthew R. Broadus; Janel R. McLean; Anna Feoktistova; Liping Ren; Kathleen L. Gould
The conserved family of Cdc14 phosphatases targets cyclin-dependent kinase substrates in yeast, mediating late mitotic signaling events. To discover substrates and regulators of the Schizosaccharomyces pombe Cdc14 phosphatase Clp1, TAP-tagged Clp1, and a substrate trapping mutant (Clp1-C286S) were purified from asynchronous and mitotic (prometaphase and anaphase) cells and binding partners were identified by 2D-LC-MS/MS. Over 100 Clp1-interacting proteins were consistently identified, over 70 of these were enriched in Clp1-C286S-TAP (potential substrates) and we and others detected Cdk1 phosphorylation sites in over half (44/73) of these potential substrates. According to GO annotations, Clp1-interacting proteins are involved in many essential cellular processes including mitosis, cytokinesis, ribosome biogenesis, transcription, and trafficking among others. We confirmed association and dephosphorylation of multiple candidate substrates, including a key scaffolding component of the septation initiation network called Cdc11, an essential kinase of the conserved morphogenesis-related NDR kinase network named Shk1, and multiple Mlu1-binding factor transcriptional regulators. In addition, we identified Sal3, a nuclear β-importin, as the sole karyopherin required for Clp1 nucleoplasmic shuttling, a key mode of Cdc14 phosphatase regulation. Finally, a handful of proteins were more abundant in wild type Clp1-TAP versus Clp1-C286S-TAP, suggesting that they may directly regulate Clp1 signaling or serve as scaffolding platforms to localize Clp1 activity.
Molecular Biology of the Cell | 2012
Sebastian Mana-Capelli; Janel R. McLean; Chun-Ti Chen; Kathleen L. Gould; Dannel McCollum
The SIN signaling pathway promotes cytokinesis and other late mitotic events. The terminal SIN kinase, Sid2, phosphorylates the kinesin-14 protein Klp2 to remove it from microtubules, which is important for efficient anaphase spindle elongation and telophase nuclear positioning.
G3: Genes, Genomes, Genetics | 2012
Vera Pancaldi; Ömer Sinan Saraç; Charalampos Rallis; Janel R. McLean; Martin Převorovský; Kathleen L. Gould; Andreas Beyer; Jürg Bähler
A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein–protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70–80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt).
PLOS ONE | 2011
Martin Převorovský; Sophie R. Atkinson; Martina Ptáčková; Janel R. McLean; Kathleen L. Gould; Petr Folk; František Půta; Jürg Bähler
Background CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factors are the effector components of the Notch receptor signalling pathway, which is critical for metazoan development. The metazoan CSL proteins (class M) can also function in a Notch-independent manner. Recently, two novel classes of CSL proteins, designated F1 and F2, have been identified in fungi. The role of the fungal CSL proteins is unclear, because the Notch pathway is not present in fungi. In fission yeast, the Cbf11 and Cbf12 CSL paralogs play antagonistic roles in cell adhesion and the coordination of cell and nuclear division. Unusually long N-terminal extensions are typical for fungal and invertebrate CSL family members. In this study, we investigate the functional significance of these extended N-termini of CSL proteins. Methodology/Principal Findings We identify 15 novel CSL family members from 7 fungal species and conduct bioinformatic analyses of a combined dataset containing 34 fungal and 11 metazoan CSL protein sequences. We show that the long, non-conserved N-terminal tails of fungal CSL proteins are likely disordered and enriched in phosphorylation sites and PEST motifs. In a case study of Cbf12 (class F2), we provide experimental evidence that the protein is proteolytically processed and that the N-terminus inhibits the Cbf12-dependent DNA binding activity in an electrophoretic mobility shift assay. Conclusions/Significance This study provides insight into the characteristics of the long N-terminal tails of fungal CSL proteins that may be crucial for controlling DNA-binding and CSL function. We propose that the regulation of DNA binding by Cbf12 via its N-terminal region represents an important means by which fission yeast strikes a balance between the class F1 and class F2 paralog activities. This mode of regulation might be shared with other CSL-positive fungi, some of which are relevant to human disease and biotechnology.