Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janelle C. Stricker is active.

Publication


Featured researches published by Janelle C. Stricker.


Aging Cell | 2009

Effects of myostatin deletion in aging mice

Michael R. Morissette; Janelle C. Stricker; Michael A. Rosenberg; Cattleya Buranasombati; Emily B. Levitan; Murray A. Mittleman; Anthony Rosenzweig

Inhibitors of myostatin, a negative regulator of skeletal muscle mass, are being developed to mitigate aging‐related muscle loss. Knock‐out (KO) mouse studies suggest myostatin also affects adiposity, glucose handling and cardiac growth. However, the cardiac consequences of inhibiting myostatin remain unclear. Myostatin inhibition can potentiate cardiac growth in specific settings ( Morissette et al., 2006) , a concern because of cardiac hypertrophy is associated with adverse clinical outcomes. Therefore, we examined the systemic and cardiac effects of myostatin deletion in aged mice (27–30 months old). Heart mass increased comparably in both wild‐type (WT) and KO mice. Aged KO mice maintained twice as much quadriceps mass as aged WT; however, both groups lost the same percentage (36%) of adult muscle mass. Dual‐energy X‐ray absorptiometry revealed increased bone density, mineral content, and area in aged KO vs. aged WT mice. Serum insulin and glucose levels were lower in KO mice. Echocardiography showed preserved cardiac function with better fractional shortening (58.1% vs. 49.4%, P = 0.002) and smaller left ventricular diastolic diameters (3.41 vs. 2.71, P = 0.012) in KO vs. WT mice. Phospholamban phosphorylation was increased 3.3‐fold in KO hearts (P < 0.05), without changes in total phospholamban, sarco(endo)plasmic reticulum calcium ATPase 2a or calsequestrin. Aged KO hearts showed less fibrosis by Masson’s Trichrome staining. Thus, myostatin deletion does not affect aging‐related increases in cardiac mass and appears beneficial for bone density, insulin sensitivity and heart function in senescent mice. These results suggest that clinical interventions designed to inhibit skeletal muscle mass loss with aging could have beneficial effects on other organ systems as well.


Circulation-cardiovascular Genetics | 2015

Translational Regulation of the Mitochondrial Genome Following Redistribution of Mitochondrial MicroRNA in the Diabetic Heart

Rajaganapathi Jagannathan; Dharendra Thapa; Cody E. Nichols; Danielle L. Shepherd; Janelle C. Stricker; Tara L. Croston; Walter A. Baseler; Sara E. Lewis; Ivan Martinez; John M. Hollander

Background—Cardiomyocytes are rich in mitochondria which are situated in spatially distinct subcellular regions, including those under the plasma membrane, subsarcolemmal mitochondria, and those between the myofibrils, interfibrillar mitochondria. We previously observed subpopulation-specific differences in mitochondrial proteomes following diabetic insult. The objective of this study was to determine whether mitochondrial genome–encoded proteins are regulated by microRNAs inside the mitochondrion and whether subcellular spatial location or diabetes mellitus influences the dynamics. Methods and Results—Using microarray technology coupled with cross-linking immunoprecipitation and next generation sequencing, we identified a pool of mitochondrial microRNAs, termed mitomiRs, that are redistributed in spatially distinct mitochondrial subpopulations in an inverse manner following diabetic insult. Redistributed mitomiRs displayed distinct interactions with the mitochondrial genome requiring specific stoichiometric associations with RNA-induced silencing complex constituents argonaute-2 (Ago2) and fragile X mental retardation–related protein 1 (FXR1) for translational regulation. In the presence of Ago2 and FXR1, redistribution of mitomiR-378 to the interfibrillar mitochondria following diabetic insult led to downregulation of mitochondrially encoded F0 component ATP6. Next generation sequencing analyses identified specific transcriptome and mitomiR sequences associated with ATP6 regulation. Overexpression of mitomiR-378 in HL-1 cells resulted in its accumulation in the mitochondrion and downregulation of functional ATP6 protein, whereas antagomir blockade restored functional ATP6 protein and cardiac pump function. Conclusions—We propose mitomiRs can translationally regulate mitochondrially encoded proteins in spatially distinct mitochondrial subpopulations during diabetes mellitus. The results reveal the requirement of RNA-induced silencing complex constituents in the mitochondrion for functional mitomiR translational regulation and provide a connecting link between diabetic insult and ATP synthase function.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Maternal Engineered Nanomaterial Exposure Disrupts Progeny Cardiac Function and Bioenergetics

Quincy A. Hathaway; Cody E. Nichols; Danielle L. Shepherd; Phoebe A. Stapleton; Sarah L. McLaughlin; Janelle C. Stricker; Stephanie L. Rellick; Mark V. Pinti; Alaeddin B. Abukabda; Carroll R. McBride; Jinghai Yi; Seth M. Stine; Timothy R. Nurkiewicz; John M. Hollander

Nanomaterial production is expanding as new industrial and consumer applications are introduced. Nevertheless, the impacts of exposure to these compounds are not fully realized. The present study was designed to determine whether gestational nano-sized titanium dioxide exposure impacts cardiac and metabolic function of developing progeny. Pregnant Sprague-Dawley rats were exposed to nano-aerosols (~10 mg/m3, 130- to 150-nm count median aerodynamic diameter) for 7-8 nonconsecutive days, beginning at gestational day 5-6 Physiological and bioenergetic effects on heart function and cardiomyocytes across three time points, fetal (gestational day 20), neonatal (4-10 days), and young adult (6-12 wk), were evaluated. Functional analysis utilizing echocardiography, speckle-tracking based strain, and cardiomyocyte contractility, coupled with mitochondrial energetics, revealed effects of nano-exposure. Maternal exposed progeny demonstrated a decrease in E- and A-wave velocities, with a 15% higher E-to-A ratio than controls. Myocytes isolated from exposed animals exhibited ~30% decrease in total contractility, departure velocity, and area of contraction. Bioenergetic analysis revealed a significant increase in proton leak across all ages, accompanied by decreases in metabolic function, including basal respiration, maximal respiration, and spare capacity. Finally, electron transport chain complex I and IV activities were negatively impacted in the exposed group, which may be linked to a metabolic shift. Molecular data suggest that an increase in fatty acid metabolism, uncoupling, and cellular stress proteins may be associated with functional deficits of the heart. In conclusion, gestational nano-exposure significantly impairs the functional capabilities of the heart through cardiomyocyte impairment, which is associated with mitochondrial dysfunction.NEW & NOTEWORTHY Cardiac function is evaluated, for the first time, in progeny following maternal nanomaterial inhalation. The findings indicate that exposure to nano-sized titanium dioxide (nano-TiO2) during gestation negatively impacts cardiac function and mitochondrial respiration and bioenergetics. We conclude that maternal nano-TiO2 inhalation contributes to adverse cardiovascular health effects, lasting into adulthood.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter

Cody E. Nichols; Danielle L. Shepherd; Travis L. Knuckles; Dharendra Thapa; Janelle C. Stricker; Phoebe A. Stapleton; Valerie C. Minarchick; Aaron Erdely; Patti C. Zeidler-Erdely; Stephen E. Alway; Timothy R. Nurkiewicz; John M. Hollander

Throughout the United States, air pollution correlates with adverse health outcomes, and cardiovascular disease incidence is commonly increased following environmental exposure. In areas surrounding active mountaintop removal mines (MTM), a further increase in cardiovascular morbidity is observed and may be attributed in part to particulate matter (PM) released from the mine. The mitochondrion has been shown to be central in the etiology of many cardiovascular diseases, yet its roles in PM-related cardiovascular effects are not realized. In this study, we sought to elucidate the cardiac processes that are disrupted following exposure to mountaintop removal mining particulate matter (PM MTM). To address this question, we exposed male Sprague-Dawley rats to PM MTM, collected within one mile of an active MTM site, using intratracheal instillation. Twenty-four hours following exposure, we evaluated cardiac function, apoptotic indices, and mitochondrial function. PM MTM exposure elicited a significant decrease in ejection fraction and fractional shortening compared with controls. Investigation into the cellular impacts of PM MTM exposure identified a significant increase in mitochondrial-induced apoptotic signaling, as reflected by an increase in TUNEL-positive nuclei and increased caspase-3 and -9 activities. Finally, a significant increase in mitochondrial transition pore opening leading to decreased mitochondrial function was identified following exposure. In conclusion, our data suggest that pulmonary exposure to PM MTM increases cardiac mitochondrial-associated apoptotic signaling and decreases mitochondrial function concomitant with decreased cardiac function. These results suggest that increased cardiovascular disease incidence in populations surrounding MTM mines may be associated with increased cardiac cell apoptotic signaling and decreased mitochondrial function.


Journal of Applied Physiology | 2015

Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.

Grant C. O'Connell; Ge Guo; Janelle C. Stricker; LeBris S. Quinn; Averil Ma; Emidio E. Pistilli

Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.


PLOS ONE | 2013

Chronic Delivery of a Thrombospondin-1 Mimetic Decreases Skeletal Muscle Capillarity in Mice

Gerald N. Audet; Daniel Fulks; Janelle C. Stricker; I. Mark Olfert

Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (−140%) and SOL (−62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.


Medicine and Science in Sports and Exercise | 2015

Loss of Adipocyte Vegf Impairs Endurance Exercise Capacity in Mice

Nicole Zachwieja; Grant C. O’Connell; Janelle C. Stricker; Jessica Allen; Linda Vona-Davis; Randall W. Bryner; William Mandler; I. Mark Olfert

PURPOSE Reducing vascular endothelial growth factor (VEGF) in adipose tissue alters adipose vascularity and metabolic homeostasis. We hypothesized that this would also affect metabolic responses during exercise-induced stress and that adipocyte-specific VEGF-deficient (adipoVEGF-/-) mice would have impaired endurance capacity. METHODS Endurance exercise capacity in adipoVEGF-/- (n = 10) and littermate control (n = 11) mice was evaluated every 4 wk between 6 and 24 wk of age using a submaximal endurance run to exhaustion at 20 m·min(-1) at 10° incline. Maximal running speed, using incremental increases in speed at 30-s intervals, was tested at 25 and 37 wk of age. RESULTS White and brown adipose tissue capillarity were reduced by 40% in adipoVEGF-/-, and no difference in skeletal muscle capillarity was observed. Endurance run time to exhaustion was 30% lower in adipoVEGF-/- compared with that in controls at all time points (P < 0.001), but no difference in maximal running speed was observed between the groups. After exercise (1 h at 50% maximum running speed), adipoVEGF-/- mice displayed lower circulating insulin (P < 0.001), lower glycerol (P < 0.05), and tendency for lower blood glucose (P = 0.06) compared with controls. There was no evidence of altered oxidative damage or changes in carnitine palmitoyltransferase-1β expression in skeletal muscle of adipoVEGF-/- mice. CONCLUSIONS These data suggest that VEGF-mediated deficits in adipose tissue blunt the availability of lipid substrates during endurance exercise, which likely reduced endurance performance. Surprisingly, we also found an unchanged basal blood glucose despite lower circulating insulin in adipoVEGF-/- mice, suggesting that loss of adipocyte VEGF can blunt insulin release and/or increase basal insulin sensitivity.


Metabolic Brain Disease | 2017

Hippocampus-specific deficiency of IL-15Rα contributes to greater anxiety-like behaviors in mice.

Linda Nguyen; Joseph Bohlen; Janelle C. Stricker; Ikttesh Chahal; Han-Ting Zhang; Emidio E. Pistilli

A hippocampus-specific IL15RαKO mouse (hipIl15rafl/fl/Cre+) was generated to test the hypothesis that the targeted deletion of interleukin-15 receptor alpha (IL-15Rα) in the hippocampus contributes to altered behavior, including greater levels of anxiety and ambulatory activity. Using Cre-loxP, exons 2 and 3 of the IL-15Rα gene were excised within the hippocampus, while normal expression was maintained within the rest of the brain. In the open field test (OFT), hipIl15rafl/fl/Cre+ spent a greater amount of time in the periphery and less time in the central portions of the chamber, and there was also a noticeable trend for decreased rearing activity; these behaviors are consistent with greater levels of anxiety-like behavior in these mice. However, there were no differences in the overall locomotor counts in the OFT when comparing hipIl15rafl/fl/Cre+ mice to their littermate controls. These data implicate IL-15-related signaling within the hippocampus has a role in anxiety-like behavior.


The FASEB Journal | 2015

Thrombospondin-1 protects heart and skeletal muscle mass from cigarette smoke induced modifications

Mark Olfert; Jenny Carpenter; Janelle C. Stricker; Gerald N. Audet; Sara Olenich


The FASEB Journal | 2014

Adipocyte specific VEGF deficient mice show diminished endurance exercise capacity (1162.11)

Nicole Zachwieja; Janelle C. Stricker; Jessica Allen; Linda Vona-Davis; I. Mark Olfert

Collaboration


Dive into the Janelle C. Stricker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Mark Olfert

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge