Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet K. Jang is active.

Publication


Featured researches published by Janet K. Jang.


Journal of Cell Science | 2003

Relationship of DNA double-strand breaks to synapsis in Drosophila

Janet K. Jang; Dalia Sherizen; Rajal Bhagat; Elizabeth A. Manheim; Kim S. McKim

The relationship between synaptonemal complex formation (synapsis) and double-strand break formation (recombination initiation) differs between organisms. Although double-strand break creation is required for normal synapsis in Saccharomyces cerevisiae and the mouse, it is not necessary for synapsis in Drosophila and Caenorhabditis elegans. To investigate the timing of and requirements for double-strand break formation during Drosophila meiosis, we used an antibody that recognizes a histone modification at double-strand break sites, phosphorylation of HIS2AV (γ-HIS2AV). Our results support the hypothesis that double-strand break formation occurs after synapsis. Interestingly, we detected a low (10-25% of wildtype) number of γ-HIS2AV foci in c(3)G mutants, which fail to assemble synaptonemal complex, suggesting that there may be both synaptonemal complex-dependent and synaptonemal complex-independent mechanisms for generating double-strand breaks. Furthermore, mutations in Drosophila Rad54 (okr) and Rad51 (spnB) homologs cause delayed and prolonged γ-HIS2AV staining, suggesting that double-strand break repair is delayed but not eliminated in these mutants. There may also be an interaction between the recruitment of repair proteins and phosphorylation.


Current Biology | 2006

The Drosophila Calcipressin Sarah Is Required for Several Aspects of Egg Activation

Vanessa L. Horner; Andreas Czank; Janet K. Jang; Navjot Singh; Byron C. Williams; Jaakko Puro; Eric Kubli; Steven D. Hanes; Kim S. McKim; Mariana F. Wolfner; Michael L. Goldberg

Activation of mature oocytes initiates development by releasing the prior arrest of female meiosis, degrading certain maternal mRNAs while initiating the translation of others, and modifying egg coverings. In vertebrates and marine invertebrates, the fertilizing sperm triggers activation events through a rise in free calcium within the egg. In insects, egg activation occurs independently of sperm and is instead triggered by passage of the egg through the female reproductive tract ; it is unknown whether calcium signaling is involved. We report here that mutations in sarah, which encodes an inhibitor of the calcium-dependent phosphatase calcineurin, disrupt several aspects of egg activation in Drosophila. Eggs laid by sarah mutant females arrest in anaphase of meiosis I and fail to fully polyadenylate and translate bicoid mRNA. Furthermore, sarah mutant eggs show elevated cyclin B levels, indicating a failure to inactivate M-phase promoting factor (MPF). Taken together, these results demonstrate that calcium signaling is involved in Drosophila egg activation and suggest a molecular mechanism for the sarah phenotype. We also find the conversion of the sperm nucleus into a functional male pronucleus is compromised in sarah mutant eggs, indicating that the Drosophila eggs competence to support male pronuclear maturation is acquired during activation.


Journal of Cell Science | 2006

Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators

Jeff M. Cesario; Janet K. Jang; Bethany Redding; Nishit Shah; Taslima Rahman; Kim S. McKim

Drosophila Subito is a kinesin 6 family member and ortholog of mitotic kinesin-like protein (MKLP2) in mammalian cells. Based on the previously established requirement for Subito in meiotic spindle formation and for MKLP2 in cytokinesis, we investigated the function of Subito in mitosis. During metaphase, Subito localized to microtubules at the center of the mitotic spindle, probably interpolar microtubules that originate at the poles and overlap in antiparallel orientation. Consistent with this localization pattern, subito mutants improperly assembled microtubules at metaphase, causing activation of the spindle assembly checkpoint and lagging chromosomes at anaphase. These results are the first demonstration of a kinesin 6 family member with a function in mitotic spindle assembly, possibly involving the interpolar microtubules. However, the role of Subito during mitotic anaphase resembles other kinesin 6 family members. Subito localizes to the spindle midzone at anaphase and is required for the localization of Polo, Incenp and Aurora B. Genetic evidence suggested that the effects of subito mutants are attenuated as a result of redundant mechanisms for spindle assembly and cytokinesis. For example, subito double mutants with ncd, polo, Aurora B or Incenp mutations were synthetic lethal with severe defects in microtubule organization.


Genetics | 2012

The chromosomal passenger complex is required for meiotic acentrosomal spindle assembly and chromosome biorientation.

Sarah J. Radford; Janet K. Jang; Kim S. McKim

DURING meiosis in the females of many species, spindle assembly occurs in the absence of the microtubule-organizing centers called centrosomes. In the absence of centrosomes, the nature of the chromosome-based signal that recruits microtubules to promote spindle assembly as well as how spindle bipolarity is established and the chromosomes orient correctly toward the poles is not known. To address these questions, we focused on the chromosomal passenger complex (CPC). We have found that the CPC localizes in a ring around the meiotic chromosomes that is aligned with the axis of the spindle at all stages. Using new methods that dramatically increase the effectiveness of RNA interference in the germline, we show that the CPC interacts with Drosophila oocyte chromosomes and is required for the assembly of spindle microtubules. Furthermore, chromosome biorientation and the localization of the central spindle kinesin-6 protein Subito, which is required for spindle bipolarity, depend on the CPC components Aurora B and Incenp. Based on these data we propose that the ring of CPC around the chromosomes regulates multiple aspects of meiotic cell division including spindle assembly, the establishment of bipolarity, the recruitment of important spindle organization factors, and the biorientation of homologous chromosomes.


Methods of Molecular Biology | 2009

Cytological Analysis of Meiosis in Fixed Drosophila Ovaries

Kim S. McKim; Eric F. Joyce; Janet K. Jang

Methods are described to analyze two different parts of the Drosophila ovary, which correspond to early stages (pachytene) and late stages (metaphase I and beyond) of meiosis. In addition to taking into account morphology, the techniques differ by fixation conditions and the method to isolate the tissue. Most of these methods are whole mounts, which preserve the three-dimensional structure.


Genetics | 2007

Misregulation of the Kinesin-like protein Subito induces meiotic spindle formation in the absence of chromosomes and centrosomes

Janet K. Jang; Taslima Rahman; Vanessa S. Kober; Jeffry Cesario; Kim S. McKim

Bipolar spindles assemble in the absence of centrosomes in the oocytes of many species. In Drosophila melanogaster oocytes, the chromosomes have been proposed to initiate spindle assembly by nucleating or capturing microtubules, although the mechanism is not understood. An important contributor to this process is Subito, which is a kinesin-6 protein that is required for bundling interpolar microtubules located within the central spindle at metaphase I. We have characterized the domains of Subito that regulate its activity and its specificity for antiparallel microtubules. This analysis has revealed that the C-terminal domain may interact independently with microtubules while the motor domain is required for maintaining the interaction with the antiparallel microtubules. Surprisingly, deletion of the N-terminal domain resulted in a Subito protein capable of promoting the assembly of bipolar spindles that do not include centrosomes or chromosomes. Bipolar acentrosomal spindle formation during meiosis in oocytes may be driven by the bundling of antiparallel microtubules. Furthermore, these experiments have revealed evidence of a nuclear- or chromosome-based signal that acts at a distance to activate Subito. Instead of the chromosomes directly capturing microtubules, signals released upon nuclear envelope breakdown may activate proteins like Subito, which in turn bundles together microtubules.


G3: Genes, Genomes, Genetics | 2018

Kinesin 6 Regulation in Drosophila Female Meiosis by the Non-conserved N- and C- Terminal Domains

Arunika Das; Jeffry Cesario; Anna Maria Hinman; Janet K. Jang; Kim S. McKim

Bipolar spindle assembly occurs in the absence of centrosomes in the oocytes of most organisms. In the absence of centrosomes in Drosophila oocytes, we have proposed that the kinesin 6 Subito, a MKLP-2 homolog, is required for establishing spindle bipolarity and chromosome biorientation by assembling a robust central spindle during prometaphase I. Although the functions of the conserved motor domains of kinesins is well studied, less is known about the contribution of the poorly conserved N- and C- terminal domains to motor function. In this study, we have investigated the contribution of these domains to kinesin 6 functions in meiosis and early embryonic development. We found that the N-terminal domain has antagonistic elements that regulate localization of the motor to microtubules. Other parts of the N- and C-terminal domains are not required for microtubule localization but are required for motor function. Some of these elements of Subito are more important for either mitosis or meiosis, as revealed by separation-of-function mutants. One of the functions for both the N- and C-terminals domains is to restrict the CPC to the central spindle in a ring around the chromosomes. We also provide evidence that CDK1 phosphorylation of Subito regulates its activity associated with homolog bi-orientation. These results suggest the N- and C-terminal domains of Subito, while not required for localization to the central spindle microtubules, have important roles regulating Subito, by interacting with other spindle proteins and promoting activities such as bipolar spindle formation and homologous chromosome bi-orientation during meiosis.


Annual Review of Genetics | 2002

Meiotic Recombination and Chromosome Segregation in Drosophila Females

Kim S. McKim; Janet K. Jang; Elizabeth A. Manheim


Genetics | 1999

Identification of Novel Drosophila Meiotic Genes Recovered in a P-Element Screen

J J Sekelsky; Kim S. McKim; L Messina; Rachael L. French; W D Hurley; T Arbel; G M Chin; Benjamin Deneen; S J Force; K L Hari; Janet K. Jang; Anne Laurençon; Ld Madden; H J Matthies; D B Milliken; S L Page; A D Ring; Sarah M. Wayson; C C Zimmerman; R. S. Hawley


Genetics | 2002

mei-P22 encodes a chromosome-associated protein required for the initiation of meiotic recombination in Drosophila melanogaster

Hao Liu; Janet K. Jang; Naohiro Kato; Kim S. McKim

Collaboration


Dive into the Janet K. Jang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth A. Manheim

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dalia Sherizen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Naohiro Kato

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Rajal Bhagat

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

A D Ring

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge