Janet L. Ruhland
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janet L. Ruhland.
Journal of Neurophysiology | 2009
Daniel J. Tollin; Janet L. Ruhland; Tom C. T. Yin
The mammalian orienting response to sounds consists of a gaze shift that can be a combination of head and eye movements. In animals with mobile pinnae, the ears also move. During head movements, vision is stabilized by compensatory rotations of the eyeball within the head because of the vestibulo-ocular reflex (VOR). While studying the gaze shifts made by cats to sounds, a previously uncharacterized compensatory movement was discovered. The pinnae exhibited short-latency, goal-directed movements that reached their target while the head was still moving. The pinnae maintained a fixed position in space by counter-rotating on the head with an equal but opposite velocity to the head movement. We call these compensatory ear movements the vestibulo-auricular reflex (VAR) because they shared many kinematic characteristics with the VOR. Control experiments ruled out efference copy of head position signals and acoustic tracking (audiokinetic) of the source as the cause of the response. The VAR may serve to stabilize the auditory world during head movements.
Journal of Neurophysiology | 2013
Yan Gai; Janet L. Ruhland; Tom C. T. Yin
Forward masking is traditionally measured with a detection task in which the addition of a preceding masking sound results in an increased signal-detection threshold. Little is known about the influence of forward masking on localization of free-field sound for human or animal subjects. Here we recorded gaze shifts of two head-unrestrained cats during localization using a search-coil technique. A broadband (BB) noise masker was presented straight ahead. A brief signal could come from 1 of the 17 speaker locations in the frontal hemifield. The signal was either a BB or a band-limited (BL) noise. For BB targets, the presence of the forward masker reduced localization accuracy at almost all target levels (20 to 80 dB SPL) along both horizontal and vertical dimensions. Temporal decay of masking was observed when a 15-ms interstimulus gap was added between the end of the masker and the beginning of the target. A large effect of forward masking was also observed for BL targets with low (0.2-2 kHz) and mid (2-7 kHz) frequencies, indicating that the interaural timing cue is susceptible to forward masking. Except at low sound levels, a small or little effect was observed for high-frequency (7-15 kHz) targets, indicating that the interaural level and the spectral cues in that frequency range remained relatively robust. Our findings suggest that different localization mechanisms can operate independently in a complex listening environment.
Journal of Neurophysiology | 2015
Yan Gai; Janet L. Ruhland; Tom C. T. Yin
The precedence effect (PE) is an auditory illusion that occurs when listeners localize nearly coincident and similar sounds from different spatial locations, such as a direct sound and its echo. It has mostly been studied in humans and animals with immobile heads in the horizontal plane; speaker pairs were often symmetrically located in the frontal hemifield. The present study examined the PE in head-unrestrained cats for a variety of paired-sound conditions along the horizontal, vertical, and diagonal axes. Cats were trained with operant conditioning to direct their gaze to the perceived sound location. Stereotypical PE-like behaviors were observed for speaker pairs placed in azimuth or diagonally in the frontal hemifield as the interstimulus delay was varied. For speaker pairs in the median sagittal plane, no clear PE-like behavior occurred. Interestingly, when speakers were placed diagonally in front of the cat, certain PE-like behavior emerged along the vertical dimension. However, PE-like behavior was not observed when both speakers were located in the left hemifield. A Hodgkin-Huxley model was used to simulate responses of neurons in the medial superior olive (MSO) to sound pairs in azimuth. The novel simulation incorporated a low-threshold potassium current and frequency mismatches to generate internal delays. The model exhibited distinct PE-like behavior, such as summing localization and localization dominance. The simulation indicated that certain encoding of the PE could have occurred before information reaches the inferior colliculus, and MSO neurons with binaural inputs having mismatched characteristic frequencies may play an important role.
Journal of Neurophysiology | 2015
Janet L. Ruhland; Amy E. Jones; Tom C. T. Yin
Sound localization in cats and humans relies on head-centered acoustic cues. Studies have shown that humans are able to localize sounds during rapid head movements that are directed toward the target or other objects of interest. We studied whether cats are able to utilize similar dynamic acoustic cues to localize acoustic targets delivered during rapid eye-head gaze shifts. We trained cats with visual-auditory two-step tasks in which we presented a brief sound burst during saccadic eye-head gaze shifts toward a prior visual target. No consistent or significant differences in accuracy or precision were found between this dynamic task (2-step saccade) and the comparable static task (single saccade when the head is stable) in either horizontal or vertical direction. Cats appear to be able to process dynamic auditory cues and execute complex motor adjustments to accurately localize auditory targets during rapid eye-head gaze shifts.
Jaro-journal of The Association for Research in Otolaryngology | 2014
Yan Gai; Janet L. Ruhland; Tom C. T. Yin
ABSTRACTAlthough localization of sound in elevation is believed to depend on spectral cues, it has been shown with human listeners that the temporal features of sound can also greatly affect localization performance. Of particular interest is a phenomenon known as the negative level effect, which describes the deterioration of localization ability in elevation with increasing sound level and is observed only with impulsive or short-duration sound. The present study uses the gaze positions of domestic cats as measures of perceived locations of sound targets varying in azimuth and elevation. The effects of sound level on localization in terms of accuracy, precision, and response latency were tested for sound with different temporal features, such as a click train, a single click, a continuous sound that had the same frequency spectrum of the click train, and speech segments. In agreement with previous human studies, negative level effects were only observed with click-like stimuli and only in elevation. In fact, localization of speech sounds in elevation benefited significantly when the sound level increased. Our findings indicate that the temporal continuity of a sound can affect the frequency analysis performed by the auditory system, and the variation in the frequency spectrum contained in speech sound does not interfere much with the spectral coding for its location in elevation.
Hearing Research | 2014
Amy E. Jones; Janet L. Ruhland; Yan Gai; Tom C. T. Yin
Almost all behavioral studies of sound localization have used either an approach-to-target or pointing/orienting task to assess absolute sound localization performance, yet there are very few direct comparisons of these measures. In an approach-to-target task, the subject is trained to walk to a sound source from a fixed location. In an orienting task, finger, head and/or eye movements are monitored while the subjects body is typically constrained. The fact that subjects may also initiate head and eye movements toward the target during the approach-to-target task allows us to measure the accuracy of the initial orienting response and compare it with subsequent target selection. To perform this comparison, we trained cats to localize a broadband noise presented randomly from one of four speakers located ± 30° and ± 60° in azimuth. The cat responded to each sound presentation by walking to and pressing a lever at the perceived location, and a food reward was delivered if the first attempt was correct. In tandem, we recorded initial head and eye orienting movements, via magnetic search coils, immediately following target onset and prior to the walking response. Reducing either stimulus duration or level resulted in a systematic decline in both measurements of localization performance. When the task was easy, localization performance was accurate for both measures. When the task was more difficult, the number of incorrect (i.e., wrong selection) and no-go (i.e., no selection) responses increased. Interestingly, for many of the incorrect trials, there was a dissociation between the orienting response and the target selected, and for many of the no-go trials, the gaze oriented towards the correct target even though the cat did not move to it. This suggests different neural systems governing walking to a target as compared to unconditioned gaze orienting.
Journal of Neurophysiology | 2005
Daniel J. Tollin; Luis C. Populin; Jordan M. Moore; Janet L. Ruhland; Tom C. T. Yin
Journal of Neurophysiology | 2013
Yan Gai; Janet L. Ruhland; Tom C. T. Yin; Daniel J. Tollin
Journal of Neurophysiology | 2013
Daniel J. Tollin; Janet L. Ruhland; Tom C. T. Yin
Jaro-journal of The Association for Research in Otolaryngology | 2013
Janet L. Ruhland; Tom C. T. Yin; Daniel J. Tollin