Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet M. Thornton is active.

Publication


Featured researches published by Janet M. Thornton.


Journal of Applied Crystallography | 1993

PROCHECK: a program to check the stereochemical quality of protein structures

Roman A. Laskowski; Malcolm W. MacArthur; David S. Moss; Janet M. Thornton

The PROCHECK suite of programs provides a detailed check on the stereochemistry of a protein structure. Its outputs comprise a number of plots in PostScript format and a comprehensive residue-by-residue listing. These give an assessment of the overall quality of the structure as compared with well refined structures of the same resolution and also highlight regions that may need further investigation. The PROCHECK programs are useful for assessing the quality not only of protein structures in the process of being solved but also of existing structures and of those being modelled on known structures.


Bioinformatics | 1992

The rapid generation of mutation data matrices from protein sequences

David Jones; William R. Taylor; Janet M. Thornton

An efficient means for generating mutation data matrices from large numbers of protein sequences is presented here. By means of an approximate peptide-based sequence comparison algorithm, the set sequences are clustered at the 85% identity level. The closest relating pairs of sequences are aligned, and observed amino acid exchanges tallied in a matrix. The raw mutation frequency matrix is processed in a similar way to that described by Dayhoff et al. (1978), and so the resulting matrices may be easily used in current sequence analysis applications, in place of the standard mutation data matrices, which have not been updated for 13 years. The method is fast enough to process the entire SWISS-PROT databank in 20 h on a Sun SPARCstation 1, and is fast enough to generate a matrix from a specific family or class of proteins in minutes. Differences observed between our 250 PAM mutation data matrix and the matrix calculated by Dayhoff et al. are briefly discussed.


Journal of Biomolecular NMR | 1996

AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR*

Roman A. Laskowski; J. Antoon C. Rullmann; Malcolm W. MacArthur; Robert Kaptein; Janet M. Thornton

SummaryThe AQUA and PROCHECK-NMR programs provide a means of validating the geometry and restraint violations of an ensemble of protein structures solved by solution NMR. The outputs include a detailed breakdown of the restraint violations, a number of plots in PostScript format and summary statistics. These various analyses indicate both the degree of agreement of the model structures with the experimental data, and the quality of their geometrical properties. They are intended to be of use both to support ongoing NMR structure determination and in the validation of the final results.


Structure | 1997

CATH – a hierarchic classification of protein domain structures

Christine A. Orengo; Alex D. Michie; Susan Jones; David Jones; Mark B. Swindells; Janet M. Thornton

BACKGROUND Protein evolution gives rise to families of structurally related proteins, within which sequence identities can be extremely low. As a result, structure-based classifications can be effective at identifying unanticipated relationships in known structures and in optimal cases function can also be assigned. The ever increasing number of known protein structures is too large to classify all proteins manually, therefore, automatic methods are needed for fast evaluation of protein structures. RESULTS We present a semi-automatic procedure for deriving a novel hierarchical classification of protein domain structures (CATH). The four main levels of our classification are protein class (C), architecture (A), topology (T) and homologous superfamily (H). Class is the simplest level, and it essentially describes the secondary structure composition of each domain. In contrast, architecture summarises the shape revealed by the orientations of the secondary structure units, such as barrels and sandwiches. At the topology level, sequential connectivity is considered, such that members of the same architecture might have quite different topologies. When structures belonging to the same T-level have suitably high similarities combined with similar functions, the proteins are assumed to be evolutionarily related and put into the same homologous superfamily. CONCLUSIONS Analysis of the structural families generated by CATH reveals the prominent features of protein structure space. We find that nearly a third of the homologous superfamilies (H-levels) belong to ten major T-levels, which we call superfolds, and furthermore that nearly two-thirds of these H-levels cluster into nine simple architectures. A database of well-characterised protein structure families, such as CATH, will facilitate the assignment of structure-function/evolution relationships to both known and newly determined protein structures.


Journal of Molecular Biology | 1991

Influence of proline residues on protein conformation

Malcolm W. MacArthur; Janet M. Thornton

To study the influence of proline residues on three-dimensional structure, an analysis has been made of all proline residues and their local conformations extracted from the Brookhaven Protein Data bank. We have considered the conformation of the proline itself, the relative occurrence of cis and trans peptides preceding proline residues, the influence of proline on the conformation of the preceding residue and the conformations of various proline patterns (Pro-Pro, Pro-X-Pro, etc.). The results highlight the unique role of proline in determining local conformation.


Journal of Molecular Biology | 1988

Analysis and prediction of the different types of β-turn in proteins

C.M. Wilmot; Janet M. Thornton

Abstract β-Turns have been extracted from 59 non-identical proteins (resolution 2 A) using the standard criterion that the distance between Cα(i) and Cα(i + 3) is less than 7 A (1 A = 0·1 nm). The β-turns have been classified, using φ, ψ angles, into seven conventional turn types (I, I′, II, II′, IV, VIa, VIb) and a new class of β-turn, designated type VIII, in which the central residues (i + 1, i + 2) adopt an αRβ conformation. Most β-turn types are found in various topological environments, with the exception of I′ and II′ β-turns, where 83% and 50%, respectively, are found in β-hairpins. Sufficient data have been gathered to enable, for the first time, the separate statistical analysis of type I and II β-turns. The two turn types have been shown to be strikingly different in their sequence preferences. Type I turns favour Asp, Asn, Ser and Cys at i; Asp, Ser, Thr and Pro at i + 1; Asp, Ser, Asn and Arg at i + 2; Gly, Trp and Met at i + 3, whilst type II turns prefer Pro at i + 1; Gly and Asn at i + 2; Gln and Arg at i + 3. These preferences have been explained by the specific side-chain interactions observed within the X-ray structures. The positional trends for type I and II β-turns have been incorporated into the simple empirical predictive algorithm originally developed by P. N. Lewis et al. The program has improved the positional prediction of β-turns, and has enhanced and extended the method by predicting the type of β-turn. Since the observed preferences reflect local interactions these predictions are applicable not only to proteins, but also to peptides, many of which are thought to contain β-turns.


Science | 2009

Ribosomal Protein S6 Kinase 1 Signaling Regulates Mammalian Life Span

Colin Selman; Jennifer M. A. Tullet; Daniela Wieser; Elaine E. Irvine; Steven Lingard; Agharul I. Choudhury; Marc Claret; Hind Al-Qassab; Danielle Carmignac; Faruk Ramadani; Angela Woods; Iain C. A. F. Robinson; Eugene Schuster; Rachel L. Batterham; Sara C. Kozma; George Thomas; David Carling; Klaus Okkenhaug; Janet M. Thornton; Linda Partridge; David Gems; Dominic J. Withers

Mimicking Caloric Restriction The extended life span and resistance to age-related diseases in animals exposed to caloric restriction has focused attention on the biochemical mechanisms that produce these effects. Selman et al. (p. 140; see the Perspective by Kaeberlein and Kapahi) explored the role of the mammalian ribosomal protein S6 kinase 1 (S6K1), which regulates protein translation and cellular energy metabolism. Female knockout mice lacking expression of S6K1 showed characteristics of animals exposed to caloric restriction, including improved health and increased longevity. The beneficial effects included reduced fat mass in spite of increased food intake. Thus, inhibition of signaling pathways activated by S6K1 might prove beneficial in protecting against age-related disease. A signaling pathway in mice mediates the effects of caloric restriction that protect against age-related diseases. Caloric restriction (CR) protects against aging and disease, but the mechanisms by which this affects mammalian life span are unclear. We show in mice that deletion of ribosomal S6 protein kinase 1 (S6K1), a component of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway, led to increased life span and resistance to age-related pathologies, such as bone, immune, and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)–activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian life-span and suggest that therapeutic manipulation of S6K1 and AMPK might mimic CR and could provide broad protection against diseases of aging.


Journal of Molecular Biology | 1981

Disulphide bridges in globular proteins.

Janet M. Thornton

Disulphide bridges in proteins of known sequence, connectivity and structure were studied to search for common features. Their distribution, topology, conformation and conservation were analysed in detail. Several general patterns emerge which to some extent dictate disulphide bridge formation. For example, there is a strong preference for shorter connections, with half-cystines separated by less than 24 residues in 49% of all disulphides. Right- and left-handed disulphides occur equally; the left-handed structures adopt one predominant conformation (symmetric χ1 = −60 °, χ2 = −80 °, χ3 = t-90 °). Cystines are generally very well conserved, in contrast to cysteines, with a free —SH group, which mutate rapidly. If a disulphide is not conserved, both cystines are mutated. The role of disulphide bridges in globular proteins is discussed.


The EMBO Journal | 2003

Diversity of protein–protein interactions

Irene M.A. Nooren; Janet M. Thornton

In this review, we discuss the structural and functional diversity of protein–protein interactions (PPIs) based primarily on protein families for which three‐dimensional structural data are available. PPIs play diverse roles in biology and differ based on the composition, affinity and whether the association is permanent or transient. In vivo, the protomers localization, concentration and local environment can affect the interaction between protomers and are vital to control the composition and oligomeric state of protein complexes. Since a change in quaternary state is often coupled with biological function or activity, transient PPIs are important biological regulators. Structural characteristics of different types of PPIs are discussed and related to their physiological function, specificity and evolution.


Nucleic Acids Research | 2004

The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data

Craig T. Porter; Gail J. Bartlett; Janet M. Thornton

The Catalytic Site Atlas (CSA) provides catalytic residue annotation for enzymes in the Protein Data Bank. It is available online at http://www.ebi.ac.uk/thornton-srv/databases/CSA. The database consists of two types of annotated site: an original hand-annotated set containing information extracted from the primary literature, using defined criteria to assign catalytic residues, and an additional homologous set, containing annotations inferred by PSI-BLAST and sequence alignment to one of the original set. The CSA can be queried via Swiss-Prot identifier and EC number, as well as by PDB code. CSA Version 1.0 contains 177 original hand- annotated entries and 2608 homologous entries, and covers approximately 30% of all EC numbers found in PDB. The CSA will be updated on a monthly basis to include homologous sites found in new PDBs, and new hand-annotated enzymes as and when their annotation is completed.

Collaboration


Dive into the Janet M. Thornton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Jones

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gemma L. Holliday

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabel E. Todd

University College London

View shared research outputs
Top Co-Authors

Avatar

David Jones

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge