Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet P. Hapgood is active.

Publication


Featured researches published by Janet P. Hapgood.


Endocrine Reviews | 2013

Progestogens Used in Postmenopausal Hormone Therapy: Differences in Their Pharmacological Properties, Intracellular Actions, and Clinical Effects

Frank Z. Stanczyk; Janet P. Hapgood; Sharon A Winer; Daniel R. Mishell

The safety of progestogens as a class has come under increased scrutiny after the publication of data from the Womens Health Initiative trial, particularly with respect to breast cancer and cardiovascular disease risk, despite the fact that only one progestogen, medroxyprogesterone acetate, was used in this study. Inconsistency in nomenclature has also caused confusion between synthetic progestogens, defined here by the term progestin, and natural progesterone. Although all progestogens by definition have progestational activity, they also have a divergent range of other properties that can translate to very different clinical effects. Endometrial protection is the primary reason for prescribing a progestogen concomitantly with postmenopausal estrogen therapy in women with a uterus, but several progestogens are known to have a range of other potentially beneficial effects, for example on the nervous and cardiovascular systems. Because women remain suspicious of the progestogen component of postmenopausal hormone therapy in the light of the Womens Health Initiative trial, practitioners should not ignore the potential benefits to their patients of some progestogens by considering them to be a single pharmacological class. There is a lack of understanding of the differences between progestins and progesterone and between individual progestins differing in their effects on the cardiovascular and nervous systems, the breast, and bone. This review elucidates the differences between the substantial number of individual progestogens employed in postmenopausal hormone therapy, including both progestins and progesterone. We conclude that these differences in chemical structure, metabolism, pharmacokinetics, affinity, potency, and efficacy via steroid receptors, intracellular action, and biological and clinical effects confirm the absence of a class effect of progestogens.


Steroids | 2011

Molecular mechanisms of steroid receptor-mediated actions by synthetic progestins used in HRT and contraception

Donita Africander; Nicolette Verhoog; Janet P. Hapgood

Synthetic progestins are used by millions of women as contraceptives and in hormone replacement therapy (HRT), although their molecular mechanisms of action are not well understood. The importance of investigating these mechanisms, as compared to those of progesterone, has been highlighted by clinical evidence showing that medroxyprogesterone acetate (MPA), a first generation progestin, increases the risk of breast cancer and coronary heart disease in HRT users. A diverse range of later generation progestins with varying structures and pharmacological properties is available for therapeutic use and it is becoming clear that different progestins elicit beneficial and adverse effects to different extents. These differences in biological activity are likely to be due to many factors including variations in dose, metabolism, pharmacokinetics, bioavailability, and regulation of, and/or binding, to serum-binding proteins and steroidogenic enzymes. Since the intracellular effects on gene expression and cell signaling of steroids are mediated via intracellular steroid receptors, differential actions via the progesterone and other steroid receptors and their isoforms, are likely to be the major cause of differential intracellular actions of progestins. Since many progestins bind not only to the progesterone receptor, but also to the glucocorticoid, androgen, mineralocorticoid, and possibly the estrogen receptors, it is plausible that synthetic progestins exert therapeutic actions as well as side-effects via some of these receptors. Here we review the molecular mechanisms of intracellular actions of old (MPA, norethisterone, levonorgestrel, gestodene) vs. new (drospirenone, dienogest, trimegestone) generation progestins, via steroid receptors.


Molecular and Cellular Endocrinology | 2009

Ligand-selective transactivation and transrepression via the glucocorticoid receptor: Role of cofactor interaction

Katharina Ronacher; Katie Hadley; Chanel Avenant; Elisabeth Stubsrud; S. Stoney Simons; Ann Louw; Janet P. Hapgood

The mechanisms that determine ligand-selective transcriptional responses by the glucocorticoid receptor (GR) are not fully understood. Using a wide panel of GR ligands, we investigated the relationships between the potency and maximal response for transactivation via a glucocorticoid response element (GRE) and transrepression via both nuclear factor small ka, CyrillicB (NFsmall ka, CyrillicB) and activator protein-1 (AP-1) sites, relative binding affinity for the GR, as well as interaction with both coactivators and corepressors. The results showed ligand-selective differences in potency and efficacy for each promoter, as well as for a particular ligand between the three promoters. Ligand potency correlated with relative affinity for the GR for agonists and partial agonists in transactivation but not for transrepression. Maximal response was unrelated to relative affinity of ligand for GR for both transactivation and transrepression. A good and significant correlation between full length coactivator binding in two-hybrid assays and efficacy as well as potency of different receptor-steroid complexes for both transactivation and transrepression supports a major role for coactivator recruitment in determination of ligand-selective transcriptional activity. Furthermore, ligand-selective GR binding to GRIP-1, as determined by both two-hybrid and DNA pull down assays, correlated positively with ligand-selective efficacy for transactivation of both a synthetic GRE reporter with expressed GR as well as of an endogenous gene via endogenous GR. The receptor interacting domain of the corepressor SMRT exhibited strong interaction with both agonists and partial agonists, similar to the results for coactivators, suggesting a possible role for SMRT in activation of transcription. However, there was no correlation between ligand affinity for the GR and cofactor interaction. These results provide strong quantitative biochemical support for a model in which GR-mediated ligand-selective differential interaction with GRIP-1, SRC-1A, NCoR and SMRT is a major determinant of ligand-selective and promoter-specific differences in potency and efficacy, for both transactivation and transrepression.


Journal of Neuroendocrinology | 2005

Regulation of Expression of Mammalian Gonadotrophin-Releasing Hormone Receptor Genes

Janet P. Hapgood; H. Sadie; W. van Biljon; Katharina Ronacher

Gonadotrophin‐releasing hormone (GnRH), acting via its cognate GnRH receptor (GnRHR), is the primary regulator of mammalian reproductive function, and hence GnRH analogues are extensively used in the treatment of hormone‐dependent diseases, as well as for assisted reproductive techniques. In addition to its established endocrine role in gonadotrophin regulation in the pituitary, evidence is rapidly accumulating to support the expression and functional roles for two forms of GnRHR (GnRHR I and GnRHR II) in multiple and diverse extra‐pituitary mammalian tissues and cells. These findings, together with findings indicating that mutations of the GnRHR are linked to the disease hypogonadotrophic hypogonadism and that GnRHRs play a direct role in neuronal migration and reproductive cancers, have presented new therapeutic targets and intensified research into the structure, function and mechanisms of regulation of expression of GnRHR genes. The present review focuses on the current knowledge on tissue‐specific and hormonal regulation of transcription of mammalian GnRH receptor genes. Emerging insights, such as the discovery of diverse regulatory mechanisms in pituitary and extra‐pituitary cell types, nonclassical mechanisms of steroid regulation, the use of composite elements for cell‐specific expression, the increasing profile of hormones involved in regulation, the complexity of kinase pathways that target the GnRHR I gene, as well as species‐differences, are highlighted. Although further research is necessary to understand the mechanisms of regulation of expression of GnRHR I and GnRHR II genes, the GnRHR is emerging as a potential target gene for facilitating cross‐talk between neuroendocrine, immune and stress‐response systems in multiple tissues via autocrine, paracrine and endocrine signalling.


Journal of Biological Chemistry | 2001

A Chicken Gonadotropin-releasing Hormone Receptor That Confers Agonist Activity to Mammalian Antagonists IDENTIFICATION OF d-LYS6 IN THE LIGAND AND EXTRACELLULAR LOOP TWO OF THE RECEPTOR AS DETERMINANTS

Yuh-Man Sun; Colleen A. Flanagan; Nicola Illing; Thomas R. Ott; Robin Sellar; Bernhard J. Fromme; Janet P. Hapgood; Peter Sharp; Stuart C. Sealfon; Robert P. Millar

Mammalian receptors for gonadotropin-releasing hormone (GnRH) have over 85% sequence homology and similar ligand selectivity. Biological studies indicated that the chicken GnRH receptor has a distinct pharmacology, and certain antagonists of mammalian GnRH receptors function as agonists. To explore the structural determinants of this, we have cloned a chicken pituitary GnRH receptor and demonstrated that it has marked differences in primary amino acid sequence (59% homology) and in its interactions with GnRH analogs. The chicken GnRH receptor had high affinity for mammalian GnRH (K i 4.1 ± 1.2 nm) , similar to the human receptor (K i 4.8 ± 1.2 nm). But, in contrast to the human receptor, it also had high affinity for chicken GnRH ([Gln8]GnRH) and GnRH II ([His5,Trp7,Tyr8]GnRH) (K i 5.3 ± 0.5 and 0.6 ± 0.01 nm). Three mammalian receptor antagonists were also pure antagonists in the chicken GnRH receptor. Another three, characterized by d-Lys6 ord-isopropyl-Lys6 moieties, functioned as pure antagonists in the human receptor but were full or partial agonists in the chicken receptor. This suggests that the Lys side chain interacts with functional groups of the chicken GnRH receptor to stabilize it in the active conformation and that these groups are not available in the activated human GnRH receptor. Substitution of the human receptor extracellular loop two with the chicken extracellular loop two identified this domain as capable of conferring agonist activity to mammalian antagonists. Although functioning of antagonists as agonists has been shown to be species-dependent for several GPCRs, the dependence of this on an extracellular domain has not been described.


Journal of Biological Chemistry | 2010

Abrogation of Glucocorticoid Receptor Dimerization Correlates with Dissociated Glucocorticoid Behavior of Compound A

Steven Robertson; Fatima Allie-Reid; Wim Vanden Berghe; Koch Visser; Anke Binder; Donita Africander; Michael Vismer; Karolien De Bosscher; Janet P. Hapgood; Guy Haegeman; Ann Louw

Compound A (CpdA), a dissociated glucocorticoid receptor modulator, decreases corticosteroid-binding globulin (CBG), adrenocorticotropic hormone (ACTH), and luteneinizing hormone levels in rats. Whether this is due to transcriptional regulation by CpdA is not known. Using promoter reporter assays we show that CpdA, like dexamethasone (Dex), directly transrepresses these genes. Results using a rat Cbg proximal-promoter reporter construct in BWTG3 and HepG2 cell lines support a glucocorticoid receptor (GR)-dependent transrepression mechanism for CpdA. However, CpdA, unlike Dex, does not result in transactivation via glucocorticoid-responsive elements within a promoter reporter construct even when GR is co-transfected. The inability of CpdA to result in transactivation via glucocorticoid-responsive elements is confirmed on the endogenous tyrosine aminotransferase gene, whereas transrepression ability is confirmed on the endogenous CBG gene. Consistent with a role for CpdA in modulating GR activity, whole cell binding assays revealed that CpdA binds reversibly to the GR, but with lower affinity than Dex, and influences association of [3H]Dex, but has no effect on dissociation. In addition, like Dex, CpdA causes nuclear translocation of the GR, albeit to a lesser degree. Several lines of evidence, including fluorescence resonance energy transfer, co-immunoprecipitation, and nuclear immunofluorescence studies of nuclear localization-deficient GR show that CpdA, unlike Dex, does not elicit ligand-induced GR dimerization. Comparison of the behavior of CpdA in the presence of wild type GR to that of Dex with a dimerization-deficient GR mutant (GRdim) strongly supports the conclusion that loss of dimerization is responsible for the dissociated behavior of CpdA.


Cell Biology International | 2001

REGULATION OF GENE EXPRESSION BY GC-RICH DNA CIS-ELEMENTS

Janet P. Hapgood; Johann Riedemann; Sonja D. Scherer

GC‐rich DNA cis elements are important transcriptional regulatory elements present in the promoter, enhancer and locus control regions of many eukaryotic genes from several species. This review attempts to examine the structure, function and biological significance of GC‐rich cis ‐regulatory elements and their cognate binding proteins, with a view to understanding their role in regulation of gene expression.


Biology of Reproduction | 2002

Type II Gonadotropin-Releasing Hormone Receptor Transcripts in Human Sperm

W. van Biljon; S. Wykes; S. Scherer; Stephen A. Krawetz; Janet P. Hapgood

Abstract GnRH regulates reproduction via the well-characterized mammalian pituitary GnRH receptor (type I). In addition, two homologous genes for a second form of the GnRH receptor (type II) are present in the human genome, one on chromosome 14 and the second on chromosome 1. The chromosome 14 gene is ubiquitously transcribed at high levels in the antisense orientation but lacks exon 1, required to encode a full-length receptor. In comparison, the chromosome 1 gene contains all three exons. The issue of whether this gene is transcribed in any human tissue(s), and whether these transcripts encode a functional receptor protein, remains unresolved. We have directly addressed this by screening a panel of human RNAs by hybridization and RT-PCR. These analyses showed that, unlike the chromosome 14 gene, chromosome 1 gene expression is limited and of low abundance. Exon 1-containing transcripts were detected by in situ hybridization in mature sperm and in human postmeiotic testicular cells. Further sequence analysis revealed that although all the potential coding segments were present, the human transcripts, like the gene, contain a stop codon within the coding region and a frame-shift relative to other mammalian GnRH receptors. Although this suggests that the human gene may be a transcribed pseudogene, a functional type II GnRH receptor cDNA has recently been cloned from monkeys. Given the well-established role of GnRH in spermatogenesis and reported evidence of type II GnRH receptor immunoreactivity in human tissues, it is possible that the chromosome 1 gene is functional.


Molecular Endocrinology | 2009

Genomic and Nongenomic Cross Talk between the Gonadotropin-Releasing Hormone Receptor and Glucocorticoid Receptor Signaling Pathways

Andrea Kotitschke; Hanél Sadie-Van Gijsen; Chanel Avenant; Sandra Fernandes; Janet P. Hapgood

The GnRH receptor (GnRHR), a member of the G protein-coupled receptor family, is a central regulator of reproductive function in all vertebrates. The peptide hormone GnRH exerts its effects via binding to the GnRHR in pituitary gonadotropes. We investigated the mechanisms of regulation of transcription of the mGnRHR gene in the mouse pituitary gonadotrope L beta T2 cell line by GnRH and dexamethasone (dex). Reporter assays with transfected mGnRHR promoter show that both dex and GnRH increase transcription of the mGnRHR gene via an activating protein-1 (AP-1) site. Real-time PCR confirmed this on the endogenous mGnRHR gene, and small interfering RNA experiments revealed a requirement for the glucocorticoid receptor (GR) for both the dex and GnRH response. Chromatin immunoprecipitation (ChIP) and immunofluorescence assays provide evidence that both GnRH and dex up-regulate the GnRHR gene via nuclear translocation and interaction of the GR with the AP-1 region on the mGnRHR promoter. We show that GnRH activates the unliganded GR by rapid phosphorylation of the GR at Ser-234 in a GnRHR-dependent fashion to transactivate a GRE reporter gene in L beta T2 and COS-1 cells. Using kinase inhibitors, we established a direct link between GnRH-induced protein kinase C and MAPK activation, leading to unliganded GR phosphorylation at Ser-234 and transactivation of the glucocorticoid response element. Furthermore, we show that GnRH and dex synergistically activate the endogenous GnRHR promoter in L beta T2 cells, via a mechanism involving steroid receptor coactivator-1 recruitment to the GnRHR AP-1 region. Our results suggest a novel mechanism of rapid nongenomic cross talk between the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes via GnRHR-dependent phosphorylation and activation of the unliganded GR in response to GnRH.


Molecular and Cellular Endocrinology | 2004

Medroxyprogesterone acetate downregulates cytokine gene expression in mouse fibroblast cells

Dominique Koubovec; Wim Vanden Berghe; Linda Vermeulen; Guy Haegeman; Janet P. Hapgood

Although medroxyprogesterone acetate (MPA) is used as an injectable contraceptive, in hormone replacement therapy (HRT) and in treatment of certain cancers, the steroid receptors and their target genes involved in the actions of MPA are not well understood. We show that MPA, like dexamethasone (dex), significantly represses tumour necrosis factor (TNF)-stimulated interleukin-6 (IL-6) protein production in mouse fibroblast (L929sA) cells. In addition, MPA repressed IL-6 and IL-8 promoter-reporter constructs at the transcriptional level, via interference with nuclear factor kappaB (NFkappaB) and activator protein-1 (AP-1). Furthermore, like dex, MPA does not affect NFkappaB DNA-binding activity. We also observed significant transactivation by MPA of a glucocorticoid response element (GRE)-driven promoter-reporter construct in both L929sA and COS-1 cells. The MPA-induced nuclear translocation of the glucocorticoid receptor (GR), as well as the antagonistic effects of RU486, strongly suggest that the actions of MPA in these cells are mediated at least in part via the GR.

Collaboration


Dive into the Janet P. Hapgood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Louw

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge