Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet Vonck is active.

Publication


Featured researches published by Janet Vonck.


Journal of Biological Chemistry | 2006

Architecture of Active Mammalian Respiratory Chain Supercomplexes

Eva Schäfer; Holger Seelert; Nicole H. Reifschneider; Frank Krause; Norbert A. Dencher; Janet Vonck

In the inner mitochondrial membrane, the respiratory chain complexes generate an electrochemical proton gradient, which is utilized to synthesize most of the cellular ATP. According to an increasing number of biochemical studies, these complexes are assembled into supercomplexes. However, little is known about the architecture of the proposed multicomplex assemblies. Here, we report the electron microscopic characterization of the two respiratory chain supercomplexes I1III2 and I1III2IV1 in bovine heart mitochondria, which are also two major supercomplexes in human mitochondria. After purification and demonstration of enzymatic activity, their structures in projection were determined by single particle image analysis. A difference map between the supercomplexes I1III2 and I1III2IV1 closely fits the x-ray structure of monocomplex IV and shows its location in the assembly. By comparing different views of supercomplex I1III2IV1, the location and mutual arrangement of complex I and the complex III dimer are discussed. Detailed knowledge of the architecture of the active supercomplexes is a prerequisite for a deeper understanding of energy conversion by mitochondria in mammals.


EMBO Reports | 2005

The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory

Denys Pogoryelov; Jinshu Yu; Thomas Meier; Janet Vonck; Peter Dimroth; Daniel J. Müller

The oligomeric c ring of the F‐ATP synthase from the alkaliphilic cyanobacterium Spirulina platensis was isolated and characterized. Mass spectroscopy analysis indicated a mass of 8,210 Da, reflecting that of a c monomer. The mass increased by 206 Da after treatment with the c‐subunit‐specific inhibitor dicyclohexylcarbodiimide (DCCD), which indicated modification of the ion‐binding carboxylate by DCCD. Atomic force microscopy topographs of c rings from S. platensis showed 15 symmetrically assembled subunits. The c15‐mer reported here is the largest c ring that is isolated and does not show the classical c‐ring mismatch to the three‐fold symmetry of the F1 domain.


Biochimica et Biophysica Acta | 2009

Supramolecular organization of protein complexes in the mitochondrial inner membrane

Janet Vonck; Eva Schäfer

The liquid state model that envisions respiratory chain complexes diffusing freely in the membrane is increasingly challenged by reports of supramolecular organization of the complexes in the mitochondrial inner membrane. Supercomplexes of complex III with complex I and/or IV can be isolated after solubilisation with mild detergents like digitonin. Electron microscopic studies have shown that these have a distinct architecture and are not random aggregates. A 3D reconstruction of a I1III2IV1 supercomplex shows that the ubiquinone and cytochrome c binding sites of the individual complexes are facing each other, suggesting a role in substrate channelling. Formation of supercomplexes plays a role in the assembly and stability of the complexes, suggesting that the supercomplexes are the functional state of the respiratory chain. Furthermore, a supramolecular organisation of ATP synthases has been observed in mitochondria, where ATP synthase is organised in dimer rows. Dimers can be isolated by mild detergent extraction and recent electron microscopic studies have shown that the membrane domains of the two partners in the dimer are at an angle to each other, indicating that in vivo the dimers would cause the membrane to bend. The suggested role in crista formation is supported by the observation of rows of ATP synthase dimers in the most curved parts of the cristae. Together these observations show that the mitochondrial inner membrane is highly organised and that the molecular events leading to ATP synthesis are carefully coordinated.


The EMBO Journal | 2000

Structure of the bacteriorhodopsin mutant F219L N intermediate revealed by electron crystallography

Janet Vonck

Bacteriorhodopsin is a light‐driven proton pump in halobacteria that forms crystalline patches in the cell membrane. Isomerization of the bound retinal initiates a photocycle resulting in the extrusion of a proton. An electron crystallographic analysis of the N intermediate from the mutant F219L gives a three‐dimensional view of the large conformational change that occurs on the cytoplasmic side after deprotonation of the retinal Schiff base. Helix F, together with helix E, tilts away from the center of the molecule, causing a shift of ∼3 Å at the EF loop. The top of helix G moves slightly toward the ground state location of helix F. These movements open a water‐accessible channel in the protein, enabling the transfer of a proton from an aspartate residue to the Schiff base. The movement of helix F toward neighbors in the crystal lattice is so large that it would not allow all molecules to change conformation simultaneously, limiting the occupancy of this state in the membrane to 33%. This explains photocooperative phenomena in the purple membrane.


Journal of Molecular Biology | 2002

Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase

Janet Vonck; Tassilo Krug von Nidda; Thomas Meier; Ulrich Matthey; Deryck J. Mills; Werner Kühlbrandt; Peter Dimroth

The sodium ion-translocating F(1)F(0) ATP synthase from the bacterium Ilyobacter tartaricus contains a remarkably stable rotor ring composed of 11 c subunits. The rotor ring was isolated, crystallised in two dimensions and analysed by electron cryo-microscopy. Here, we present an alpha-carbon model of the c-subunit ring. Each monomeric c subunit of 89 amino acid residues folds into a helical hairpin consisting of two membrane-spanning helices and a cytoplasmic loop. The 11 N-terminal helices are closely spaced within an inner ring surrounding a cavity of approximately 17A (1.7 nm). The tight helix packing leaves no space for side-chains and is accounted for by a highly conserved motif of four glycine residues in the inner, N-terminal helix. Each inner helix is connected by a clearly visible loop to an outer C-terminal helix. The outer helix has a kink near the position of the ion-binding site residue Glu65 in the centre of the membrane and another kink near the C terminus. Two helices from the outer ring and one from the inner ring form the ion-binding site in the middle of the membrane and a potential access channel from the binding site to the cytoplasmic surface. Three possible inter-subunit ion-bridges are likely to account for the remarkable temperature stability of I.tartaricus c-rings compared to those of other organisms.


eLife | 2014

Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector

Matteo Allegretti; Deryck J. Mills; G. McMullan; Werner Kühlbrandt; Janet Vonck

The introduction of direct electron detectors with higher detective quantum efficiency and fast read-out marks the beginning of a new era in electron cryo-microscopy. Using the FEI Falcon II direct electron detector in video mode, we have reconstructed a map at 3.36 Å resolution of the 1.2 MDa F420-reducing hydrogenase (Frh) from methanogenic archaea from only 320,000 asymmetric units. Videos frames were aligned by a combination of image and particle alignment procedures to overcome the effects of beam-induced motion. The reconstructed density map shows all secondary structure as well as clear side chain densities for most residues. The full coordination of all cofactors in the electron transfer chain (a [NiFe] center, four [4Fe4S] clusters and an FAD) is clearly visible along with a well-defined substrate access channel. From the rigidity of the complex we conclude that catalysis is diffusion-limited and does not depend on protein flexibility or conformational changes. DOI: http://dx.doi.org/10.7554/eLife.01963.001


Journal of Molecular Biology | 2003

Evidence for Structural Integrity in the Undecameric c-Rings Isolated from Sodium ATP Synthases

Thomas Meier; Ulrich Matthey; Christoph von Ballmoos; Janet Vonck; Tassilo Krug von Nidda; Werner Kühlbrandt; Peter Dimroth

The Na(+)-translocating ATP synthases from Ilyobacter tartaricus and Propionigenium modestum contain undecameric c subunit rings of unusual stability. These c(11) rings have been isolated from both ATP synthases and crystallized in two dimensions. Cryo-transmission electron microscopy projection maps of the c-rings from both organisms were identical at 7A resolution. Different crystal contacts were induced after treatment of the crystals with dicyclohexylcarbodiimide (DCCD), which is consistent with the binding of the inhibitor to glutamate 65 in the C-terminal helix on the outside of the ring. The c subunits of the isolated c(11) ring of I.tartaricus were modified specifically by incubation with DCCD with kinetics that were indistinguishable from those of the F(1)F(o) holoenzyme. The reaction rate increased with decreasing pH but was lower in the presence of Na(+). From the pH profile of the second-order rate constants, the pK of glutamate 65 was deduced to be 6.6 or 6.2 in the absence or presence of 0.5mM NaCl, respectively. These pK values are identical with those determined for the F(1)F(o) complex. The results indicate that the isolated c-ring retains its native structure, and that the glutamate 65, including binding sites near the middle of the membrane, are accessible to Na(+) from the cytoplasm through access channels within the c-ring itself.


Molecular Cell | 2016

Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology

Alexander Hahn; Kristian Parey; Maike Bublitz; Deryck J. Mills; Volker Zickermann; Janet Vonck; Werner Kühlbrandt; Thomas Meier

Summary We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology.


Journal of Biological Chemistry | 2009

Three-dimensional Structure of A1A0 ATP Synthase from the Hyperthermophilic Archaeon Pyrococcus furiosus by Electron Microscopy

Janet Vonck; Kim Y. Pisa; Nina Morgner; Bernhard Brutschy; Volker Müller

The archaeal ATP synthase is a multisubunit complex that consists of a catalytic A1 part and a transmembrane, ion translocation domain A0. The A1A0 complex from the hyperthermophile Pyrococcus furiosus was isolated. Mass analysis of the complex by laser-induced liquid bead ion desorption (LILBID) indicated a size of 730 ± 10 kDa. A three-dimensional map was generated by electron microscopy from negatively stained images. The map at a resolution of 2.3 nm shows the A1 and A0 domain, connected by a central stalk and two peripheral stalks, one of which is connected to A0, and both connected to A1 via prominent knobs. X-ray structures of subunits from related proteins were fitted to the map. On the basis of the fitting and the LILBID analysis, a structural model is presented with the stoichiometry A3B3CDE2FH2ac10.


Journal of Molecular Biology | 2011

Cell-free expression and assembly of ATP synthase.

Doreen Matthies; Stefan Haberstock; Friederike Joos; Volker Dötsch; Janet Vonck; Frank Bernhard; Thomas Meier

Cell-free (CF) expression technologies have emerged as promising methods for the production of individual membrane proteins of different types and origin. However, many membrane proteins need to be integrated in complex assemblies by interaction with soluble and membrane-integrated subunits in order to adopt stable and functionally folded structures. The production of complete molecular machines by CF expression as advancement of the production of only individual subunits would open a variety of new possibilities to study their assembly mechanisms, function, or composition. We demonstrate the successful CF formation of large molecular complexes consisting of both membrane-integrated and soluble subunits by expression of the atp operon from Caldalkalibacillus thermarum strain TA2.A1 using Escherichia coli extracts. The operon comprises nine open reading frames, and the 542-kDa F(1)F(o)-ATP synthase complex is composed of 9 soluble and 16 membrane-embedded proteins in the stoichiometry α(3)β(3)γδɛab(2)c(13). Complete assembly into the functional complex was accomplished in all three typically used CF expression modes by (i) solubilizing initial precipitates, (ii) cotranslational insertion into detergent micelles or (iii) cotranslational insertion into preformed liposomes. The presence of all eight subunits, as well as specific enzyme activity and inhibition of the complex, was confirmed by biochemical analyses, freeze-fracture electron microscopy, and immunogold labeling. Further, single-particle analysis demonstrates that the structure and subunit organization of the CF and the reference in vivo expressed ATP synthase complexes are identical. This work establishes the production of highly complex molecular machines in defined environments either as proteomicelles or as proteoliposomes as a new application of CF expression systems.

Collaboration


Dive into the Janet Vonck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker Müller

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Grininger

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge