Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janette A Norman is active.

Publication


Featured researches published by Janette A Norman.


Nature | 2006

Early evolution of the venom system in lizards and snakes

Bryan G. Fry; Nicolas Vidal; Janette A Norman; Freek J. Vonk; Holger Scheib; S. F. Ryan Ramjan; Sanjaya Kuruppu; Kim Fung; S. Blair Hedges; Michael K. Richardson; Wayne C. Hodgson; Vera Ignjatovic; Robyn Summerhayes; Elazar Kochva

Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-secreting glands on both the upper and lower jaws, whereas the advanced snakes and anguimorph lizards (including Monitor Lizards, Gila Monster and Beaded Lizard) have more derived venom systems characterized by the loss of the mandibular (lower) or maxillary (upper) glands. Demonstration that the snakes, iguanians and anguimorphs form a single clade provides overwhelming support for a single, early origin of the venom system in lizards and snakes. These results provide new insights into the evolution of the venom system in squamate reptiles and open new avenues for biomedical research and drug design using hitherto unexplored venom proteins.


Annual Review of Genomics and Human Genetics | 2009

The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.

Bryan G. Fry; Kim Roelants; Donald E. Champagne; Holger Scheib; Joel D. A. Tyndall; Glenn F. King; Timo J. Nevalainen; Janette A Norman; Richard J. Lewis; Raymond S. Norton; Camila Renjifo; Ricardo C. Rodríguez de la Vega

Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A(2), sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition.


Proceedings of the Royal Society of London B: Biological Sciences | 2002

A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens

Per G. P. Ericson; Les Christidis; Alan Cooper; Martin Irestedt; Jennifer Jackson; Ulf S. Johansson; Janette A Norman

Zoogeographic, palaeontological and biochemical data support a Southern Hemisphere origin for passerine birds, while accumulating molecular data suggest that most extant avian orders originated in the mid–Late Cretaceous. We obtained DNA sequence data from the nuclear c–myc and RAG–1 genes of the major passerine groups and here we demonstrate that the endemic New Zealand wrens (Acanthisittidae) are the sister taxon to all other extant passerines, supporting a Gondwanan origin and early radiation of passerines. We propose that (i) the acanthisittids were isolated when New Zealand separated from Gondwana (ca. 82–85 Myr ago), (ii) suboscines, in turn, were derived from an ancestral lineage that inhabited western Gondwana, and (iii) the ancestors of the oscines (songbirds) were subsequently isolated by the separation of Australia from Antarctica. The later spread of passerines into the Northern Hemisphere reflects the northward migration of these former Gondwanan elements.


Molecular & Cellular Proteomics | 2008

Evolution of an Arsenal Structural and Functional Diversification of the Venom System in the Advanced Snakes (Caenophidia)

Bryan G. Fry; Holger Scheib; Louise van der Weerd; Bruce A. Young; Judith McNaughtan; S. F. Ryan Ramjan; Nicolas Vidal; Robert E. Poelmann; Janette A Norman

Venom is a key innovation underlying the evolution of advanced snakes (Caenophidia). Despite this, very little is known about venom system structural diversification, toxin recruitment event timings, or toxin molecular evolution. A multidisciplinary approach was used to examine the diversification of the venom system and associated toxins across the full range of the ∼100 million-year-old advanced snake clade with a particular emphasis upon families that have not secondarily evolved a front-fanged venom system (∼80% of the 2500 species). Analysis of cDNA libraries revealed complex venom transcriptomes containing multiple toxin types including three finger toxins, cobra venom factor, cysteine-rich secretory protein, hyaluronidase, kallikrein, kunitz, lectin, matrix metalloprotease, phospholipase A2, snake venom metalloprotease/a disintegrin and metalloprotease, and waprin. High levels of sequence diversity were observed, including mutations in structural and functional residues, changes in cysteine spacing, and major deletions/truncations. Morphological analysis comprising gross dissection, histology, and magnetic resonance imaging also demonstrated extensive modification of the venom system architecture in non-front-fanged snakes in contrast to the conserved structure of the venom system within the independently evolved front-fanged elapid or viperid snakes. Further, a reduction in the size and complexity of the venom system was observed in species in which constriction has been secondarily evolved as the preferred method of prey capture or dietary preference has switched from live prey to eggs or to slugs/snails. Investigation of the timing of toxin recruitment events across the entire advanced snake radiation indicates that the evolution of advanced venom systems in three front-fanged lineages is associated with recruitment of new toxin types or explosive diversification of existing toxin types. These results support the role of venom as a key evolutionary innovation in the diversification of advanced snakes and identify a potential role for non-front-fanged venom toxins as a rich source for lead compounds for drug design and development.


Molecular Phylogenetics and Evolution | 2002

Systematic affinities of the lyrebirds (Passeriformes: Menura), with a novel classification of the major groups of passerine birds

Per G. P. Ericson; Les Christidis; Martin Irestedt; Janette A Norman

Phylogenetic relationships of the lyrebirds are investigated using DNA sequence data. The aligned data matrix consists of 4027 bp obtained from three nuclear genes (c-myc, RAG-1 and myoglobin intron II) and two mitochondrial genes (cytochrome b and ND2). Both maximum-likelihood and parsimony analyses show that the lyrebirds unambiguously belong to the oscine radiation, and that they are the sister taxon to all other oscines. The results do not support the suggestion based on DNA-DNA hybridization data (Sibley and Ahlquist, 1990) that the treecreepers and bowerbirds are part of the lyrebird clade. Nevertheless, treecreepers and bowerbirds are sister taxa to all other oscines (except the lyrebirds) and may constitute a monophyletic group, although bootstrap support values for this clade are low. A major disagreement between the present analysis and that based on DNA-DNA hybridization data is that the Corvida (sensu Sibley and Ahlquist, 1990) and Passerida are not reciprocally monophyletic, as we find the latter group be nested within the Corvida. Also, the superfamilies Meliphagoidea and Corvoidea sensu, are not recovered as monophyletic in the present study. Within the oscine radiation, all taxa belonging to the earliest splits are confined to the Australo-Papuan region. This suggests strongly that the origins and early radiation of the oscines occurred in the southern supercontinent Gondwana. A new classification of the major groups of passerines is presented following from the results presented in the present study, as well as those published recently on analyses of sequence data from the nuclear c-myc and RAG-1 genes (Ericson et al., 2002; Irestedt et al., 2001).


Proceedings of the National Academy of Sciences of the United States of America | 2009

A central role for venom in predation by Varanus komodoensis (Komodo Dragon) and the extinct giant Varanus (Megalania) priscus

Bryan G. Fry; Stephen Wroe; Wouter M. Teeuwisse; Matthias J.P. van Osch; Karen Moreno; Jeanette Ingle; Colin R. McHenry; Toni L. Ferrara; Phillip D. Clausen; Holger Scheib; Kelly L. Winter; Laura Greisman; Kim Roelants; Louise van der Weerd; Christofer J. Clemente; Eleni Giannakis; Wayne C. Hodgson; Sonja Luz; Paolo Martelli; Karthiyani Krishnasamy; Elazar Kochva; Hang Fai Kwok; Denis B. Scanlon; John A. Karas; Diane M Citron; Ellie J. C. Goldstein; Judith McNaughtan; Janette A Norman

The predatory ecology of Varanus komodoensis (Komodo Dragon) has been a subject of long-standing interest and considerable conjecture. Here, we investigate the roles and potential interplay between cranial mechanics, toxic bacteria, and venom. Our analyses point to the presence of a sophisticated combined-arsenal killing apparatus. We find that the lightweight skull is relatively poorly adapted to generate high bite forces but better adapted to resist high pulling loads. We reject the popular notion regarding toxic bacteria utilization. Instead, we demonstrate that the effects of deep wounds inflicted are potentiated through venom with toxic activities including anticoagulation and shock induction. Anatomical comparisons of V. komodoensis with V. (Megalania) priscus fossils suggest that the closely related extinct giant was the largest venomous animal to have ever lived.


BMC Evolutionary Biology | 2003

Inter-familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data

Per G. P. Ericson; Ida Envall; Martin Irestedt; Janette A Norman

BackgroundPhylogenetic hypotheses of higher-level relationships in the order Charadriiformes based on morphological data, partly disagree with those based on DNA-DNA hybridisation data. So far, these relationships have not been tested by analysis of DNA sequence data. Herein we utilize 1692 bp of aligned, nuclear DNA sequences obtained from 23 charadriiform species, representing 15 families. We also test earlier suggestions that bustards and sandgrouses may be nested with the charadriiforms. The data is analysed with methods based on the parsimony and maximum-likelihood criteria.ResultsSeveral novel phylogenetic relationships were recovered and strongly supported by the data, regardless of which method of analysis was employed. These include placing the gulls and allied groups as a sistergroup to the sandpiper-like birds, and not to the plover-like birds. The auks clearly belong to the clade with the gulls and allies, and are not basal to most other charadriiform birds as suggested in analyses of morphological data. Pluvialis, which has been supposed to belong to the plover family (Charadriidae), represents a basal branch that constitutes the sister taxon to a clade with plovers, oystercatchers and avocets. The thick-knees and sheathbills unexpectedly cluster together.ConclusionThe DNA sequence data contains a strong phylogenetic signal that results in a well-resolved phylogenetic tree with many strongly supported internodes. Taxonomically it is the most inclusive study of shorebird families that relies on nucleotide sequences. The presented phylogenetic hypothesis provides a solid framework for analyses of macroevolution of ecological, morphological and behavioural adaptations observed within the order Charadriiformes.


Molecular Ecology Resources | 2008

Optimizing the use of shed feathers for genetic analysis

Fiona Hogan; Raylene Cooke; Christopher P. Burridge; Janette A Norman

Shed feathers obtained by noninvasive genetic sampling (NGS) are a valuable source of DNA for genetic studies of birds. They can be collected across a large geographical range and facilitate research on species that would otherwise be extremely difficult to study. A limitation of this approach is uncertainty concerning the quality of the extracted DNA. Here we investigate the relationship between feather type, feather condition and DNA quality (amplification success) in order to provide a simple, cost‐effective method for screening samples prior to genetic analysis. We obtained 637 shed feathers of the powerful owl (Ninox strenua) from across its range in southeastern Australia. The extracted DNA was amplified using polymerase chain reaction for a range of markers including mitochondrial DNA, ND3 and nuclear DNA, a simple sequence repeat (Nst02) and a portion of the CHD‐1 gene (P2/P8). We found that feather condition significantly influenced the amplification success of all three loci, with feathers characterized as ‘good’ having greater success. Feather type was found to be of lower importance, with good quality feathers of all types consistently producing high success for all three loci. We also found that the successful amplification of multilocus genotypes was dependant on the condition of the starting material and was highly correlated with successful amplification of the sex‐linked CHD‐1 locus. Samples with low DNA quality have a higher probability of amplification failure and are more likely to produce incorrect genotypes; therefore, identifying samples with high DNA quality can save substantial time and cost associated with the genetic analysis of NGS. As a result, we propose a method for screening shed feathers in order to provide a subset of samples which will have a greater probability of containing high quality DNA suitable for the amplification of multilocus genotypes.


Molecular Phylogenetics and Evolution | 2008

Explosive avian radiations and multi-directional dispersal across Wallacea: Evidence from the Campephagidae and other Crown Corvida (Aves)

Knud A. Jønsson; Martin Irestedt; Jérôme Fuchs; Per G. P. Ericson; Les Christidis; Rauri C. K. Bowie; Janette A Norman; Eric Pasquet; Jon Fjeldså

The systematic relationships among avian families within Crown Corvida have been poorly studied so far and as such been of limited use for biogeographic interpretations. The group has its origin in Australia and is thought to have colonized Africa and the New World via Asia beginning some 35 Mya when terranes of Australian origin approached Asian landmasses. Recent detailed tectonic mapping of the origin of land masses in the region around Wallaces line have revealed a particularly complex movement of terranes over the last 20-30 Myr. Thus the biogeographic dispersal pattern of Crown Corvida is a particularly exciting case for linking vicariance and dispersal events with Earth history. Here we examine phylogenetic affinities among 72 taxa covering a broad range of genera in the basal radiations within Crown Corvida with an emphasis on Campephagidae and Pachycephalidae. Bayesian analyses of nuclear DNA sequence data identified the family Campephagidae as monophyletic but the large genus Coracina is not. Within the family Pachycephalidae the genera Pachycephala and Colluricincla are paraphyletic with respect to each other. The resulting phylogeny suggests that patterns of dispersal across Wallaces line are complex and began at least 25 Mya. We find evidence of explosive radiations and multi-directional dispersal within the last 10 Myr, and three independent long distance ocean dispersal events between Wallacea and Africa at 10-15 Mya. Furthermore, the study reveals that in the Campephagidae a complex series of dispersal events rather than vicariance is the most likely explanation for the current biogeographic pattern in the region.


Molecular Biology and Evolution | 2010

Novel Venom Proteins Produced by Differential Domain-Expression Strategies in Beaded Lizards and Gila Monsters (genus Heloderma)

Bryan G. Fry; Kim Roelants; Kelly L. Winter; Wayne C. Hodgson; Laura Griesman; Hang Fai Kwok; Denis B. Scanlon; John A. Karas; Chris Shaw; Lily Wong; Janette A Norman

The origin and evolution of venom proteins in helodermatid lizards were investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: 1) The first full-length sequences of lethal toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral monodomain, monoproduct gene (beta-defensin) that underwent three tandem domain duplications to encode a tetradomain, monoproduct with a possible novel protein fold; 2) an ancestral monodomain gene (encoding a natriuretic peptide) was medially extended to become a pentadomain, pentaproduct through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by posttranslational proteolysis; and 3) an ancestral multidomain, multiproduct gene belonging to the vasoactive intestinal peptide (VIP)/glucagon family being mutated to encode for a monodomain, monoproduct (exendins) followed by duplication and diversification into two variant classes (exendins 1 and 2 and exendins 3 and 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isoforms within each class. These results highlight the importance of utilizing evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.

Collaboration


Dive into the Janette A Norman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Les Christidis

Southern Cross University

View shared research outputs
Top Co-Authors

Avatar

Bryan G. Fry

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Frank E. Rheindt

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per G. P. Ericson

Swedish Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Roelants

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge