Janette Bester
University of Pretoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janette Bester.
Fems Microbiology Reviews | 2015
Marnie Potgieter; Janette Bester; Douglas B. Kell; Etheresia Pretorius
Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines.
Cellular Physiology and Biochemistry | 2016
Etheresia Pretorius; Jeanette N. du Plooy; Janette Bester
Erythrocytes (RBCs) are extremely sensitive cells, and although they do not have nuclei and mitochondria, are important health indicators. This is particularly true because, during inflammation, whether it is systemic or chronic, the haematological system is constantly exposed to circulating inflammatory mediators. RBCs have a highly specialized and organized membrane structure, which interacts and reacts to inflammatory molecule insults, and undergo programmed cell death, similar to apoptosis, known as eryptosis. Over the past years, eryptosis studies have focussed on determining if membrane changes have occurred, particularly whether a phosphatidylserine (PS) flip, Ca2+ leakage into the cell, changes to ceramide and cell shrinkage have occurred. Mostly, flow cytometry is used, but confocal microscopy and ultrastructural studies also confirm eryptosis. Here, we provide a comprehensive overview of eryptosis, where we revisit the biochemical process of the process, review all literature in PUBMED, that is shown under the search word, “eryptosis”, and also discuss current methodologies to determine the presence of eryptosis; included in the discussion of the methodologies, we discuss a pitfalls section for each method. This paper is therefore a comprehensive synopsis of current knowledge of eryptosis and discusses how RBCs may provide an essential in vivo cell model system to study not only inflammation in disease, but also track disease progression and treatment regimes.
PLOS ONE | 2014
Etheresia Pretorius; Janette Bester; Natasha Vermeulen; Boguslaw Lipinski; George S. Gericke; Douglas B. Kell
It is well-known that individuals with increased iron levels are more prone to thrombotic diseases, mainly due to the presence of unliganded iron, and thereby the increased production of hydroxyl radicals. It is also known that erythrocytes (RBCs) may play an important role during thrombotic events. Therefore the purpose of the current study was to assess whether RBCs had an altered morphology in individuals with hereditary hemochromatosis (HH), as well as some who displayed hyperferritinemia (HF). Using scanning electron microscopy, we also assessed means by which the RBC and fibrin morphology might be normalized. An important objective was to test the hypothesis that the altered RBC morphology was due to the presence of excess unliganded iron by removing it through chelation. Very striking differences were observed, in that the erythrocytes from HH and HF individuals were distorted and had a much greater axial ratio compared to that accompanying the discoid appearance seen in the normal samples. The response to thrombin, and the appearance of a platelet-rich plasma smear, were also markedly different. These differences could largely be reversed by the iron chelator desferal and to some degree by the iron chelator clioquinol, or by the free radical trapping agents salicylate or selenite (that may themselves also be iron chelators). These findings are consistent with the view that the aberrant morphology of the HH and HF erythrocytes is caused, at least in part, by unliganded (‘free’) iron, whether derived directly via raised ferritin levels or otherwise, and that lowering it or affecting the consequences of its action may be of therapeutic benefit. The findings also bear on the question of the extent to which accepting blood donations from HH individuals may be desirable or otherwise.
Toxicology Mechanisms and Methods | 2013
Etheresia Pretorius; Natasha Vermeulen; Janette Bester; Boguslaw Lipinski; Douglas B. Kell
Abstract Aims: Inflammatory diseases associated with iron overload are characterized by a changed coagulation profile, where there is a persistent presence of fibrin-like material of dense-matted deposits (DMDs). It is believed that one source of such material is a result of the activation of blood coagulation without the generation of thrombin, causing clots to become resistant to fibrinolytic dissolution. The aim of the current manuscript therefore is to apply a novel scanning electron microscopy method for assessing the role of functional chelation in the prevention or reversal of iron-induced fibrin formation. Methods and results: Purified fibrinogen and platelet-rich plasma were exposed to chelating agents followed by iron, to determine the chelating effects. We show that there is another, pathological pathway of fibrin formation initiated by free iron (initially as Fe (III)), leading to the formation of highly reactive oxygen species such as the hydroxyl radical that can oxidize and insolubilize proteins, a process that might be inhibited by iron-chelating compounds. The final product of such a pathway is a fibrin-like material, termed DMDs that are remarkably resistant to proteolytic degradation. Conclusions: Scanning electron microscopy shows that iron-chelating agents are effective inhibitors of DMD formation. The most active inhibitors of DMD formation proved to be Desferal, Clioquinol and Curcumin, whereas Epigallocatechin gallate and Deferiprone were less effective. The functional model we describe may point the clinical utility of various substances in iron-mediated degenerative diseases.
Oncotarget | 2015
Janette Bester; Prashilla Soma; Douglas B. Kell; Etheresia Pretorius
Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most common form of dementia. Patients typically present with neuro- and systemic inflammation and iron dysregulation, associated with oxidative damage that reflects in hypercoagulability. Hypercoagulability is closely associated with increased fibrin(ogen) and in AD patients fibrin(ogen) has been implicated in the development of neuroinflammation and memory deficits. There is still no clear reason precisely why (a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) could together lead to the loss of neuronal structure and cognitive function. Here we suggest an alternative hypothesis based on previous ultrastructural evidence of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, might be the cause of the continuing and low-grade inflammation, characteristic of AD. Here, we follow an integrated approach, by studying the viscoelastic and ultrastructural properties of AD plasma and whole blood by using scanning electron microscopy, Thromboelastography (TEG®) and the Global Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state in AD. TEG® results where LPS was added to naive blood showed the same trends as were found with the AD patients, while the GTT® results (where only platelet activity is measured), were not affected by the added LPS, suggesting that LPS does not directly impact platelet function. Our findings reinforce the importance of further investigating the role of LPS in AD.
Frontiers in Aging Neuroscience | 2013
Janette Bester; Antoinette V. Buys; Boguslaw Lipinski; Douglas B. Kell; Etheresia Pretorius
Introduction: Unliganded iron both contributes to the pathology of Alzheimers disease (AD) and also changes the morphology of erythrocytes (RBCs). We tested the hypothesis that these two facts might be linked, i.e., that the RBCs of AD individuals have a variant morphology, that might have diagnostic or prognostic value. Methods: We included a literature survey of AD and its relationships to the vascular system, followed by a laboratory study. Four different microscopy techniques were used and results statistically compared to analyze trends between high and normal serum ferritin (SF) AD individuals. Results: Light and scanning electron microscopies showed little difference between the morphologies of RBCs taken from healthy individuals and from normal SF AD individuals. By contrast, there were substantial changes in the morphology of RBCs taken from high SF AD individuals. These differences were also observed using confocal microscopy and as a significantly greater membrane stiffness (measured using force-distance curves). Conclusion: We argue that high ferritin levels may contribute to an accelerated pathology in AD. Our findings reinforce the importance of (unliganded) iron in AD, and suggest the possibility both of an early diagnosis and some means of treating or slowing down the progress of this disease.
Scientific Reports | 2016
Janette Bester; Etheresia Pretorius
Complex interactions exist between cytokines, and the interleukin family plays a fundamental role in inflammation. Particularly circulating IL-1β, IL-6 and IL-8 are unregulated in systemic and chronic inflammatory conditions. Hypercoagulability is an important hallmark of inflammation, and these cytokines are critically involved in abnormal clot formation, erythrocyte pathology and platelet hyper-activation, and these three cytokines have known receptors on platelets. Although these cytokines are always unregulated in inflammation, we do not know how the individual cytokines act upon the structure of erythrocytes and platelets, and which of the viscoelastic clot parameters are changed. Here we study the effects of IL-1β, IL-6 and IL-8 at low physiological levels, representative of chronic inflammation, by using scanning electron microscopy and thromboelastography. All three interleukins caused the viscoelastic properties to display an increased hypercoagulability of whole blood and pathology of both erythrocytes and platelets. The most pronounced changes were noted where all three cytokines caused platelet hyper-activation and spreading. Erythrocyte structure was notably affected in the presence of IL-8, where the morphological changes resembled that typically seen in eryptosis (programmed cell death). We suggest that erythrocytes and platelets are particularly sensitive to cytokine presence, and that they are excellent health indicators.
Cardiovascular Diabetology | 2015
Etheresia Pretorius; Janette Bester; Natasha Vermeulen; Sajee Alummoottil; Prashilla Soma; Antoinette V. Buys; Douglas B. Kell
We have noted in previous work, in a variety of inflammatory diseases, where iron dysregulation occurs, a strong tendency for erythrocytes to lose their normal discoid shape and to adopt a skewed morphology (as judged by their axial ratios in the light microscope and by their ultrastructure in the SEM). Similarly, the polymerization of fibrinogen, as induced in vitro by added thrombin, leads not to the common ‘spaghetti-like’ structures but to dense matted deposits. Type 2 diabetes is a known inflammatory disease. In the present work, we found that the axial ratio of the erythrocytes of poorly controlled (as suggested by increased HbA1c levels) type 2 diabetics was significantly increased, and that their fibrin morphologies were again highly aberrant. As judged by scanning electron microscopy and in the atomic force microscope, these could be reversed, to some degree, by the addition of the iron chelators deferoxamine (DFO) or deferasirox (DFX). As well as their demonstrated diagnostic significance, these morphological indicators may have prognostic value.
Blood Reviews | 2016
Etheresia Pretorius; Oore-ofe O. Olumuyiwa-Akeredolu; Sthembile Mbotwe; Janette Bester
The relevance of erythrocyte light microscopy analysis (a well-known haematological method) is under the spotlight, however there is a place for innovative electron microscopy, (together with biochemical markers) in a pathology laboratory. Inflammation is a key indicator of the health status and erythrocytes are extremely sensitive to oxidative stress or cytokine upregulation, which typically accompany systemic inflammation in most diseases. They are probably the most adaptable cells, and due to their short lifespan, may form a vital indicator of health, and could play a central part in tracking disease and treatment. As the NIH is proposing a precision medicine approach and because individualised medicine should form an essential part in diagnosis and treatment, biophysical combined with biochemical analysis of erythrocytes may be a novel method to track the inflammatory status before and after treatment. This will allow a fully individualised patient orientated precision medicine approach, where one-medication-regime-fits-all is no longer appropriate.
Current Drug Targets | 2012
Etheresia Pretorius; Janette Bester; Natasha Vermeulen; Boguslaw Lipinski
Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood.