Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janette Palma Fett is active.

Publication


Featured researches published by Janette Palma Fett.


The Plant Cell | 2002

Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation

Erin L. Connolly; Janette Palma Fett; Mary Lou Guerinot

Iron, an essential nutrient, is not readily available to plants because of its low solubility. In addition, iron is toxic in excess, catalyzing the formation of hydroxyl radicals that can damage cellular constituents. Consequently, plants must carefully regulate iron uptake so that iron homeostasis is maintained. The Arabidopsis IRT1 gene is the major transporter responsible for high-affinity iron uptake from the soil. Here, we show that the steady state level of IRT1 mRNA was induced within 24 h after transfer of plants to iron-deficient conditions, with protein levels peaking 72 h after transfer. IRT1 mRNA and protein were undetectable 12 h after plants were shifted back to iron-sufficient conditions. Overexpression of IRT1 did not confer dominant gain-of-function enhancement of metal uptake. Analysis of 35S-IRT1 transgenic plants revealed that although IRT1 mRNA was expressed constitutively in these plants, IRT1 protein was present only in the roots when iron is limiting. Under these conditions, plants that overexpressed IRT1 accumulated higher levels of cadmium and zinc than wild-type plants, indicating that IRT1 is responsible for the uptake of these metals and that IRT1 protein levels are indeed increased in these plants. Our results suggest that the expression of IRT1 is controlled by two distinct mechanisms that provide an effective means of regulating metal transport in response to changing environmental conditions.


Genetics and Molecular Biology | 2003

Iron homeostasis related genes in rice

Jeferson Gross; Ricardo Stein; Arthur Germano Fett-Neto; Janette Palma Fett

Iron is essential for plants. However, excess iron is toxic, leading to oxidative stress and decreased productivity. Therefore, plants must use finely tuned mechanisms to keep iron homeostasis in each of their organs, tissues, cells and organelles. A few of the genes involved in iron homeostasis in plants have been identified recently, and we used some of their protein sequences as queries to look for corresponding genes in the rice (Oryza sativa) genome. We have assigned possible functions to thirty-nine new rice genes. Together with four previously reported sequences, we analyzed a total of forty-three genes belonging to five known protein families: eighteen YS (Yellow Stripe), two FRO (Fe 3+ -chelate reductase oxidase), thirteen ZIP (Zinc regulated transporter / Iron regulated transporter Protein), eight NRAMP (Natural Resistance - Associated Macrophage Protein), and two Ferritin proteins. The possible cellular localization and number of potential transmembrane domains were evaluated, and phylogenetic analysis performed for each gene family. Annotation of genomic sequences was performed. The presence and number of homologues in each gene family in rice and Arabidopsis is discussed in light of the established iron acquisition strategies used by each one of these two plants.


Planta | 2009

Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor

Raul Antonio Sperotto; Felipe Klein Ricachenevsky; Guilherme Leitão Duarte; Tatiana Boff; Karina Letícia Lopes; Edilena Reis Sperb; Michael A. Grusak; Janette Palma Fett

Rice is a poor source of micronutrients such as iron and zinc. To help clarify the molecular mechanisms that regulate metal mobilization from leaves to developing seeds, we conducted suppression subtractive hybridization analysis in flag leaves of two rice cultivars. Flag leaves are the major source of remobilized metals for developing seeds. We isolated 78 sequences up-regulated in flag leaves at the grain filling stage relative to the panicle exertion stage. Differential expression of selected genes (encoding 7 transport proteins, the OsNAS3 enzyme and the OsNAC5 transcription factor) was confirmed by quantitative RT-PCR. We show that OsNAC5 expression is up-regulated by natural (aging) and induced senescence processes (dark, ABA application, high salinity, cold and Fe-deficiency) and its expression is not affected in the presence of 6-benzylaminopurine (a senescence inhibitor) under dark-induced senescence. Salt induction of OsNAC5 expression is abolished by nicotinamide, an inhibitor of ABA effects. This result and the presence of cis-acting elements in the promoter region of the OsNAC5 gene suggest an ABA-dependent regulation. Using four different rice cultivars, we show that OsNAC5 up-regulation is higher and earlier in flag leaves and panicles of IR75862 plants, which have higher seed concentrations of Fe, Zn and protein. We suggest that OsNAC5 is a novel senescence-associated ABA-dependent NAC transcription factor and its function could be related to Fe, Zn and amino acids remobilization from green tissues to seeds.


Plant Physiology | 1994

Characterization and expression of two cDNAs encoding carbonic anhydrase in Arabidopsis thaliana.

Janette Palma Fett; John R. Coleman

Two distinct cDNA clones encoding carbonic anhydrase (CA) were isolated from an Arabidopsis thaliana [lambda]YES library. One of these clones, CA1, encodes a 36.1-kD polypeptide and is essentially the same as a previously reported Arabidopsis CA cDNA (C.A. Raines, P.R. Horsnell, C. Holder, J.C. Lloyd [1992] Plant Mol Biol 20: 1143–1148). Comparison of the derived amino acid sequence from this clone with other plant CAs suggests the presence of a chloroplastic transit peptide, which, when cleaved, would render a mature protein of 24.3 kD. The other identified clone, CA2, encodes a 28.3-kD polypeptide, which in addition to other residue changes, is 78 amino acids shorter at the N terminus than the primary product of CA1. The two cDNAs exhibit 76.9% sequence similarity at the DNA level and 84.6% identity between the predicted amino acid sequences. A polyclonal antibody generated against pea CA (N. Majeau, J.R. Coleman [1991] Plant Physiol 100:1077–1078) hybridized to two protein bands (25 and 28 kD) from a total leaf extract and to only one band (25 kD) from a chloroplastic protein extract. The data suggest that the CA2 protein is an extrachloroplastic form of CA, presumably localized in the cytoplasm. Southern analysis indicated that CA1 and CA2 are encoded by different genes. Northern analysis of total leaf RNA resulted in hybridization of CA1- and CA2-derived probes to two transcripts of 1.47 and 1.2 kb, respectively. These data provide additional evidence that the CA2 clone is a full-length cDNA and that two transcribed CA genes are present in the Arabidopsis genome. Transcript levels of CA1 and CA2 decreased 70 and 20%, respectively, when mature plants were transferred to dark for 24 h. Seedlings germinated in the dark showed CA1 and CA2 transcript abundance levels of 4 and 22%, respectively, when compared with light-germinated seedlings. These data suggest that expression of CA1 is light regulated and dependent on leaf and/or chloroplast development. A possible role for cytoplasmic CA in the plant cell is discussed.


Plant Science | 2012

Iron biofortification in rice: It's a long way to the top

Raul Antonio Sperotto; Felipe Klein Ricachenevsky; Vinicius de Abreu Waldow; Janette Palma Fett

Rice and most staple cereals contain low iron (Fe) levels, most of which is lost during grain processing. Populations with monotonous diets consisting mainly of cereals are especially prone to Fe deficiency, which affects about two billion people. Supplementation or food fortification programs have not always been successful. Crop Fe fertilization is also not very effective due to Fe soil insolubility. An alternative solution is Fe biofortification by generating cultivars that efficiently mobilize, uptake and translocate Fe to the edible parts. Here, we review the strategies used for the Fe biofortification of rice, including conventional breeding and directed genetic modification, which offer the most rapid way to develop Fe-rich rice plants. While classical breeding is able to modify the contents of inhibitors of Fe absorption, transgenic approaches have focused on enhanced Fe uptake from soil, xylem and phloem loading and grain sink strength. A comprehensive table is provided in which the percentages of the recommended dietary Fe intake reached by independently developed transgenic plants are calculated. In this review we also emphasize that the discovery of new QTLs and genes related to Fe biofortification is extremely important, but interdisciplinary research is needed for future success in this area.


Journal of Plant Physiology | 2010

Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains.

Raul Antonio Sperotto; Tatiana Boff; Guilherme Leitão Duarte; Lívia Scheunemann dos Santos; Michael A. Grusak; Janette Palma Fett

Rice is the staple food of half of the worlds population; however, it is a poor source of essential micronutrients such as Fe and Zn. Since flag leaves are one of the sources of remobilized metals for developing seeds, the identification of the molecular players that might contribute to the process of metal transport from flag leaves to the seeds may be useful for biofortification purposes. We analyzed the expression of 25 metal-related genes from rice, including rice homologues for YSLs, NRAMPs, ZIPs, IRT1, VIT1 (coding for known or potential metal transporters), as well as NASs, FROs and NAC5 (involved in metal homeostasis) in flag leaves of eight rice cultivars (showing contrasting levels of seed Fe and Zn) during panicle emergence (R3) and grain filling stage (R5). The expression level of nine of these genes (OsYSL6, OsYSL8, OsYSL14, OsNRAMP1, OsNRAMP7, OsNRAMP8, OsNAS1, OsFRO1 and OsNAC5) in flag leaves exhibited significant correlations with Fe and/or Zn concentrations in the seeds. In this way, our study has provided a short list of putative target genes to manipulate Fe and Zn concentrations in rice grains.


Plant Physiology | 1994

Regulation of Periplasmic Carbonic Anhydrase Expression in Chlamydomonas reinhardtii by Acetate and pH.

Janette Palma Fett; John R. Coleman

The effects of mixotrophic growth with acetate and growth medium pH on expression of extracellular carbonic anhydrase (CA) in Chlamydomonas reinhardtii were evaluated. Addition of 10 mM acetate to the culture medium resulted in reduction of CA activity that was parallel to the reduction generated by growth of the algae in high external CO2 concentrations. This reduction in activity is a consequence of lower level of the CA protein as determined by western analysis. Transcript abundance of cah-1, the gene encoding the low CO2-induced CA, is also reduced by the addition of acetate as verified by northern analysis. Measurements of photosynthesis and respiration suggest that the acetate-induced reduction of CA expression is not a function of lowered photosynthetic capacity, but may be the result of increased internal CO2 concentration generated by high, acetate-stimulated respiratory rates. Growth medium pH can also influence extracellular CA expression. The induction of CA activity, protein abundance, and transcript levels by exposure to limiting inorganic carbon (Ci) concentrations is much more pronounced at higher than at lower pH values. The relationship between pH regulation of CA expression and its role in the Ci-concentrating mechanism are discussed.


Frontiers in Plant Science | 2013

Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies

Felipe Klein Ricachenevsky; Paloma Koprovski Menguer; Raul Antonio Sperotto; Lorraine E. Williams; Janette Palma Fett

Zinc (Zn) is an essential micronutrient for plants, playing catalytic or structural roles in enzymes, transcription factors, ribosomes, and membranes. In humans, Zn deficiency is the second most common mineral nutritional disorder, affecting around 30% of the worlds population. People living in poverty usually have diets based on milled cereals, which contain low Zn concentrations. Biofortification of crops is an attractive cost-effective solution for low mineral dietary intake. In order to increase the amounts of bioavailable Zn in crop edible portions, it is necessary to understand how plants take up, distribute, and store Zn within their tissues, as well as to characterize potential candidate genes for biotechnological manipulation. The metal tolerance proteins (MTP) were described as metal efflux transporters from the cytoplasm, transporting mainly Zn2+ but also Mn2+, Fe2+, Cd2+, Co2+, and Ni2+. Substrate specificity appears to be conserved in phylogenetically related proteins. MTPs characterized so far in plants have a role in general Zn homeostasis and tolerance to Zn excess; in tolerance to excess Mn and also in the response to iron (Fe) deficiency. More recently, the first MTPs in crop species have been functionally characterized. In Zn hyperaccumulator plants, the MTP1 protein is related to hypertolerance to elevated Zn concentrations. Here, we review the current knowledge on this protein family, as well as biochemical functions and physiological roles of MTP transporters in Zn hyperaccumulators and non-accumulators. The potential applications of MTP transporters in biofortification efforts are discussed.


Journal of Experimental Botany | 2013

Functional analysis of the rice vacuolar zinc transporter OsMTP1

Paloma Koprovski Menguer; Emily Farthing; Kerry A. Peaston; Felipe Klein Ricachenevsky; Janette Palma Fett; Lorraine E. Williams

Heavy metal homeostasis is maintained in plant cells by specialized transporters which compartmentalize or efflux metal ions, maintaining cytosolic concentrations within a narrow range. OsMTP1 is a member of the cation diffusion facilitator (CDF)/metal tolerance protein (MTP) family of metal cation transporters in Oryza sativa, which is closely related to Arabidopsis thaliana MTP1. Functional complementation of the Arabidopsis T-DNA insertion mutant mtp1-1 demonstrates that OsMTP1 transports Zn in planta and localizes at the tonoplast. When heterologously expressed in the yeast mutant zrc1 cot1, OsMTP1 complemented its Zn hypersensitivity and was also localized to the vacuole. OsMTP1 alleviated, to some extent, the Co sensitivity of this mutant, rescued the Fe hypersensitivity of the ccc1 mutant at low Fe concentrations, and restored growth of the Cd-hypersensitive mutant ycf1 at low Cd concentrations. These results suggest that OsMTP1 transports Zn but also Co, Fe, and Cd, possibly with lower affinity. Site-directed mutagenesis studies revealed two substitutions in OsMTP1 that alter the transport function of this protein. OsMTP1 harbouring a substitution of Leu82 to a phenylalanine can still transport low levels of Zn, with an enhanced affinity for Fe and Co, and a gain of function for Mn. A substitution of His90 with an aspartic acid completely abolishes Zn transport but improves Fe transport in OsMTP1. These amino acid residues are important in determining substrate specificity and may be a starting point for refining transporter activity in possible biotechnological applications, such as biofortification and phytoremediation.


Journal of Natural Products | 2001

Brachycerine, a novel monoterpene indole alkaloid from Psychotria brachyceras

Vitor A. Kerber; Tatiana Schaffer Gregianini; Juçara Terezinha Paranhos; Joseli Schwambach; Fabiane M. Farias; Janette Palma Fett; Arthur Germano Fett-Neto; Jose Angelo Silveira Zuanazzi; Jean-Charles Quirion; Elaine Elizabetsky; Amelia Teresinha Henriques

Brachycerine (1), an unusual alkaloid from the leaves of Psychotria brachyceras, was characterized through spectroscopic data interpretation and its stereochemistry established by NOE difference techniques. Brachycerine (1) was found to be restricted to shoots in rooted cuttings of P. brachyceras (0.018 +/- 0.004% dry weight), and accumulation was unaffected by root induction treatment with auxin.

Collaboration


Dive into the Janette Palma Fett's collaboration.

Top Co-Authors

Avatar

Felipe Klein Ricachenevsky

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Arthur Germano Fett-Neto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Paloma Koprovski Menguer

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ricardo Stein

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Júlio César de Lima

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guilherme Leitão Duarte

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Janete Mariza Adamski

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Joseli Schwambach

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge