Janez Plavec
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janez Plavec.
PLOS ONE | 2010
Gregor Ilc; Gabriele Giachin; Mariusz Jaremko; Łukasz Jaremko; Federico Benetti; Janez Plavec; Igor Zhukov; Giuseppe Legname
Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrPC) conformer, denoted as infectious scrapie isoform or PrPSc. In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrPSc in specific brain regions leading to neuronal cell degeneration and death. Here, we describe the NMR solution structure of the truncated recombinant human PrP from residue 90 to 231 carrying the Q212P mutation, which is believed to cause Gerstmann-Sträussler-Scheinker (GSS) syndrome, a familial prion disease. The secondary structure of the Q212P mutant consists of a flexible disordered tail (residues 90–124) and a globular domain (residues 125–231). The substitution of a glutamine by a proline at the position 212 introduces novel structural differences in comparison to the known wild-type PrP structures. The most remarkable differences involve the C-terminal end of the protein and the β2–α2 loop region. This structure might provide new insights into the early events of conformational transition of PrPC into PrPSc. Indeed, the spontaneous formation of prions in familial cases might be due to the disruptions of the hydrophobic core consisting of β2–α2 loop and α3 helix.
Nucleic Acids Research | 2012
Maja Marušič; Primož Šket; Lubos Bauer; Viktor Viglasky; Janez Plavec
We herein report on the formation and high-resolution NMR solution-state structure determination of a G-quadruplex adopted by d[G3ATG3ACACAG4ACG3] comprised of four G-tracts with the third one consisting of four guanines that are intervened with non-G streches of different lengths. A single intramolecular antiparallel (3+1) G-quadruplex exhibits three stacked G-quartets connected with propeller, diagonal and edgewise loops of different lengths. The propeller and edgewise loops are well structured, whereas the longer diagonal loop is more flexible. To the best of our knowledge, this is the first high-resolution G-quadruplex structure where all of the three main loop types are present.
Journal of the American Society for Mass Spectrometry | 2013
Françoise Balthasart; Janez Plavec; Valérie Gabelica
G-quadruplex nucleic acids can bind ammonium ions in solution, and these complexes can be detected by electrospray mass spectrometry (ESI-MS). However, because ammonium ions are volatile, the extent to which ESI-MS quantitatively could provide an accurate reflection of such solution-phase equilibria is unclear. Here we studied five G-quadruplexes having known solution-phase structure and ammonium ion binding constants: the bimolecular G-quadruplexes (dG4T4G4)2, (dG4T3G4)2, and (dG3T4G4)2, and the intramolecular G-quadruplexes dG4(T4G4)3 and dG2T2G2TGTG2T2G2 (thrombin binding aptamer). We found that not all mass spectrometers are equally suited to reflect the solution phase species. Ion activation can occur in the electrospray source, or in a high-pressure traveling wave ion mobility cell. When the softest instrumental conditions are used, ammonium ions bound between G-quartets, but also additional ammonium ions bound at specific sites outside the external G-quartets, can be observed. However, even specifically bound ammonium ions are in some instances too labile to be fully retained in the gas phase structures, and although the ammonium ion distribution observed by ESI-MS shows biases at specific stoichiometries, the relative abundances in solution are not always faithfully reflected. Ion mobility spectrometry results show that all inter-quartet ammonium ions are necessary to preserve the G-quadruplex fold in the gas phase. Ion mobility experiments, therefore, help assign the number of inner ammonium ions in the solution phase structure.
Chemical Science | 2014
Nathalie Busschaert; Louise E. Karagiannidis; Marco Wenzel; Cally J. E. Haynes; Neil J. Wells; Philip G. Young; Damjan Makuc; Janez Plavec; Katrina A. Jolliffe; Philip A. Gale
The transmembrane transport of anions by small synthetic molecules is a growing field in supramolecular chemistry and has focussed mainly on the transmembrane transport of chloride. On the other hand, the transport of the highly hydrophilic sulfate anion across lipid bilayers is much less developed, even though the inability to transport sulfate across cellular membranes has been linked to a variety of genetic diseases. Tris-thioureas possess high sulfate affinities and have been shown to be excellent chloride and bicarbonate transporters. Herein we report the sulfate transport abilities of a series of tris-ureas and tris-thioureas based on a tris(2-aminoethyl)amine or cyclopeptide scaffold. We have developed a new technique based on 33S NMR that can be used to monitor sulfate transport, using 33S-labelled sulfate and paramagnetic agents such as Mn2+ and Fe3+ to discriminate between intra- and extravesicular sulfate. Reasonable sulfate transport abilities were found for the reported tris-ureas and tris-thioureas, providing a starting point for the development of more powerful synthetic sulfate transporters that can be used in the treatment of certain channelopathies or as a model for biological sulfate transporters.
Journal of Molecular Biology | 2011
Ivana Biljan; Gregor Ilc; Gabriele Giachin; Andrea Raspadori; Igor Zhukov; Janez Plavec; Giuseppe Legname
The development of transmissible spongiform encephalopathies (TSEs) is associated with the conversion of the cellular prion protein (PrP(C)) into a misfolded, pathogenic isoform (PrP(Sc)). Spontaneous generation of PrP(Sc) in inherited forms of disease is caused by mutations in gene coding for PrP (PRNP). In this work, we describe the NMR solution-state structure of the truncated recombinant human PrP (HuPrP) carrying the pathological V210I mutation linked to genetic Creutzfeldt-Jakob disease. The three-dimensional structure of V210I mutant consists of an unstructured N-terminal part (residues 90-124) and a well-defined C-terminal domain (residues 125-228). The C-terminal domain contains three α-helices (residues 144-156, 170-194 and 200-228) and a short antiparallel β-sheet (residues 129-130 and 162-163). Comparison with the structure of the wild-type HuPrP revealed that although two structures share similar global architecture, mutation introduces some local structural differences. The observed variations are mostly clustered in the α(2)-α(3) inter-helical interface and in the β(2)-α(2) loop region. Introduction of bulkier Ile at position 210 induces reorientations of several residues that are part of hydrophobic core, thus influencing α(2)-α(3) inter-helical interactions. Another important structural feature involves the alteration of conformation of the β(2)-α(2) loop region and the subsequent exposure of hydrophobic cluster to solvent, which facilitates intermolecular interactions involved in spontaneous generation of PrP(Sc). The NMR structure of V210I mutant offers new clues about the earliest events of the pathogenic conversion process that could be used for the development of antiprion drugs.
Angewandte Chemie | 2009
Mateus Webba da Silva; Marko Trajkovski; Yuta Sannohe; Nason Ma'ani Hessari; Hiroshi Sugiyama; Janez Plavec
To realize a programmed build up of DNA objects, devices,and materials, a systematization of the principles that formthe basis of control for the assembly process is necessary. Thusfar the discovery of four-stranded DNA architecturesdenominated G quadruplexes was either serendipitous orthrough coincidental emergence. Herein we utilize a rationalapproach for the design of G quadruplexes based on the twostatedisposition of the glycosidic bond angle.
Biochemistry | 2013
Katarína Tlučková; Maja Marušič; Petra Tóthová; Lubos Bauer; Primož Šket; Janez Plavec; Viktor Viglasky
Infection with human papillomaviruses (HPVs) is one of the most common sexually transmitted infections and can lead to development of head and neck, skin, and anogenital cancer, including cervical cancer, which represents one of the worlds most significant health problems. In this study, we analyze G-rich regions in all known HPV genomes in order to evaluate their potential to fold into G-quadruplex structure. Interestingly, G-rich loci fulfilling the criteria for G-quadruplex formation were found in only 8 types of HPV. Nevertheless, viral G-quadruplexes in 7 sequences derived directly from HPVs are confirmed here for the first time. G-rich regions with the capacity to form G-quadruplexes are located in the LCR, L2, E1, and E4 regions of the HPV genome; therefore we assume that regulation processes in viruses could be affected by G-quadruplex formation. Our results represent a starting point for the design of specific ligands with viral G-quadruplex motifs and suggest novel methods for the control of viral replication and transcription.
Bioorganic & Medicinal Chemistry | 2008
Tatjana Gazivoda; Silvana Raić-Malić; Vedran Krištafor; Damjan Makuc; Janez Plavec; Siniša Bratulić; Sandra Kraljević-Pavelić; Krešimir Pavelić; Lieve Naesens; Graciela Andrei; Robert Snoeck; Jan Balzarini; Mladen Mintas
Abstract A series of the novel C-5 alkynyl pyrimidine nucleoside analogues (1–14) in which the sugar moiety was replaced by the conformationally restricted Z- and E-2-butenyl spacer between the phthalimido and pyrimidine ring were synthesized by using Sonogashira cross-coupling reaction. Cytostatic activity evaluation of the novel compounds showed that E-isomers exhibited, in general, better cytostatic activities than the corresponding Z-isomers. E-isomer 14 exhibited the best cytostatic effect against all evaluated malignant cell lines, particularly against hepatocellular carcinoma (Hep G2, IC50 =4.3μM). However, this compound was also cytotoxic to human normal fibroblasts (WI 38). Its Z-isomer 7 showed highly specific antiproliferative activity against Hep G2 (IC50 =18μM) and no cytotoxicity to WI 38. Moreover, compounds 3, 4 and 14 expressed some marginal inhibitory activity against HIV-1 and HIV-2.
Molecules | 2011
Davorka Završnik; Samija Muratović; Damjan Makuc; Janez Plavec; Mario Cetina; Ante Nagl; Erik De Clercq; Jan Balzarini; Mladen Mintas
We report on the synthesis of 4-hydroxycoumarin dimers 1–15 bearing an aryl substituent on the central linker and fused benzopyranocoumarin derivatives 16–20 and on their in vitro broad anti-DNA and RNA virus activity evaluations. The chemical identities and structure of compounds 1–20 were deduced from their homo- and heteronuclear NMR measurements whereas the conformational properties of 5, 14 and 20 were assessed by the use of 1D difference NOE enhancements. Unequivocal proof of the stereostructure of compounds 7, 9, 16 and 18 was obtained by single crystal X-ray diffraction method. The X-ray crystal structure analysis revealed that two 4-hydroxycoumarin moieties in the 4-trifluoromethylphenyl- and 2-nitrophenyl derivatives (compounds 7 and 9, respectively) are intramolecularly hydrogen-bonded between hydroxyl and carbonyl oxygen atoms. Consequently, the compounds 7 and 9 adopt conformations in which two 4-hydroxy-coumarin moieties are anti-disposed. Antiviral activity evaluation results indicated that the 4-bromobenzylidene derivative of bis-(4-hydroxycoumarin) (compound 3) possesses inhibitory activity against HSV-1 (KOS), HSV-2 (G), vaccinia virus and HSV-1 TK- KOS (ACVr) at a concentration of 9–12 μM and at a minimum cytotoxic concentration (MCC) greater than 20 μM. Compounds 4–6, 8, and 20 were active against feline herpes virus (50% effective concentration, EC50 = 5–8.1 μM), that is at a 4-7-fold lower concentration than the MCC.
Journal of the American Chemical Society | 2012
Marko Trajkovski; Mateus Webba da Silva; Janez Plavec
A multidimensional heteronuclear NMR study has demonstrated that a guanine-rich DNA oligonucleotide originating from the N-myc gene folds into G-quadruplex structures in the presence of K(+), NH(4)(+), and Na(+) ions. A monomeric G-quadruplex formed in K(+) ion containing solution exhibits three G-quartets and flexible propeller-type loops. The 3D structure with three single nucleotide loops represents a missing element in structures of parallel G-quadruplexes. The structural features together with the high temperature stability are suggestive of the specific biological role of G-quadruplex formation within the intron of the N-myc gene. An increase in K(+) ion and oligonucleotide concentrations resulted in transformation of the monomeric G-quadruplex into a dimeric form. The dimeric G-quadruplex exhibits six stacked G-quartets, parallel strand orientations, and propeller-type loops. A link between the third and the fourth G-quartets consists of two adenine residues that are flipped out to facilitate consecutive stacking of six G-quartets.