Jangsoo Suh
Kyungpook National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jangsoo Suh.
Review of Scientific Instruments | 2004
S. Shin; Yunhee Ku; Myungsu Park; Su Yeon Moon; J. H. Jang; Jangsoo Suh
The laser-diffraction technique has been applied to design a slit rheometer for measuring red blood cell deformability over a range of shear stress. Flow-rate and pressure-drop measurements are replaced with a measurement of pressure variation with time. Using a precision pressure transducer, one can measure the variation of pressure in the vacuum chamber, p(t), from which the shear stress and shear rate are mathematically calculated. In addition, a laser beam traverses a diluted blood suspension and is diffracted by red blood cells (RBCs) in the volume. The diffraction patterns are captured by a charge coupled device-video camera, linked to a frame grabber integrated with a computer. When deforming under decreasing shear stress, RBCs change gradually from the prolate ellipsoid towards a circular biconcave morphology. The elongation index as a measure of RBC deformability is determined from an isointensity curve in the diffraction pattern using an ellipse-fitting program. The advantages of this design are...
Toxicology Letters | 2002
Yoon-Kyung Sohn; Jangsoo Suh; Jung-Wan Kim; Hyung-Ho Seo; Jiyeon Kim; Hyeon-Yeong Kim; Jun-Yeon Lee; Sung-Bae Lee; Jeong-Hee Han; Yong-Mook Lee; Jong-Young Lee
1-Bromopropane (1-BP) has recently become known as an alternative cleaning material with less damage to the ozone layer. However, its toxicity is not fully evaluated. This study was designed to investigate the repeated inhalation toxicity of 1-BP on the nervous systems in Sprague-Dawley rats. The experiment was done by repeated exposure of the rats to 0, 200, 500, and 1250 ppm for 6 h per day, 5 days a week, for 13 weeks, respectively. Morphologic studies were done for the central nervous system, sacral and peroneal nerves. The serial sections of the brain and spinal cord of 1-BP inhalation groups revealed no pathological features either in the gray or white matter. The nerve fiber teasing, light and electron microscopic studies of the sacral and peroneal nerve fibers showed no significant difference between 1-BP inhalation groups and the control group. From these results, it is concluded that the nervous system is histologically resistant to the repeated inhalation of 1-BP up to 1250 ppm for 13 weeks. Experiments with higher concentrations of 1-BP and the functional studies are necessary to clarify the 1-BP toxicity.
Review of Scientific Instruments | 2005
S. Shin; J. H. Jang; Myungsu Park; Yunhee Ku; Jangsoo Suh
The vibration-induced disaggregation technique of red blood cell (RBC) aggregates has been applied to design a new light-transmission aggregometer for measurement of aggregation index. For disaggregation of RBCs, the rotational shear flow in the Couette system is replaced with a simple low-frequency vibration in a disposable cavity slide glass. Using a vibration generator, one can disaggregate the RBC aggregates stored in the cavity slide glass. After applying the vibration for a specified duration, RBCs tend to reaggregate and instantaneous light-transmittance intensity is measured over time. A syllectogram (the transmitted light intensity versus time) consists of an initial decrease caused by the vibration-induced disaggregation, immediately followed by an increase in the light intensity due to RBC aggregation. The indices of aggregation are determined from the syllectogram using a curve-fitting program. The noble feature of this design is the vibration-induced disaggregation mechanism, which enables to...
Biomedical Applications of Micro- and Nanoengineering II | 2005
Sehyun Shin; Yunhee Ku; Myungsu Park; Jangsoo Suh
The laser-diffraction technique has been applied to design a microfluidic channel for measuring red blood cell deformability over a range of shear stress. A laser beam traverses a diluted blood suspension and is diffracted by RBCs in the volume. The diffraction patterns are captured by a CCD-video camera, linked to a frame grabber integrated with a computer. When deforming under decreasing shear stress in the microchannel, RBCs change gradually from the prolate ellipsoid towards a circular biconcave morphology. Both the laser-diffraction image and pressure were measured with respect to time, which enable to determine the elongation index (EI) and the shear stress. The range of shear stress is 0~20Pa and the measuring time is less than 2min. The elongation index (EI) is determined from an isointensity curve in the diffraction pattern using an ellipse-fitting program. The key advantage of this design is the incorporation of a disposable element that holds the blood sample, which enables the present system to be easily used in a clinical setting.
Diabetes & Metabolism Journal | 2018
Kyu-Hwan Park; Ung Kim; Kang-Un Choi; Jong-Ho Nam; Jung-Hee Lee; Chan-Hee Lee; Jang-Won Son; Jong-Seon Park; Dong-Gu Shin; Kyu-Chang Won; Jun Sung Moon; Yu Kyung Kim; Jangsoo Suh
Background Hemorheologic indices are known to be related to vascular complications in variable clinical settings. However, little is known about the associations between hemorheologic parameters and acute myocardial infarction (AMI) in type 2 diabetes mellitus (T2DM). The purpose of this study was to demonstrate the changes of hemorheologic environment inside of blood using hemorheologic parameters, especially the elongation index (EI) and critical shear stress (CSS) in diabetics with versus without AMI. Methods A total of 195 patients with T2DM were enrolled. Patients were divided into the study group with AMI (AMI+, n=77) and control group (AMI−, n=118) who had no history of coronary artery disease. Hemorheologic parameters such as EI and CSS were measured and compared between the two groups. Results The EI was lower (30.44%±1.77% in AMI+ and 31.47%±1.48% in AMI−, P<0.001) but the level of CSS was higher (316.13±108.20 mPa in AMI+ and 286.80±85.34 mPa in AMI−, P=0.040) in the AMI+. The CSS was significantly related to the erythrocyte sedimentation rate (R2=0.497, P<0.001) and use of dipeptidyl peptidase-4 inhibitors (R2=0.574, P=0.048). Conclusion Diabetics with AMI resulted in adverse hemorheologic changes with lower EI and higher CSS compared to diabetic subjects without AMI. Evaluation of the hemorheologic parameters may provide valuable supplementary information for managing patients with AMI and T2DM.
Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II | 2005
Sehyun Shin; Yunhee Ku; Myungsu Park; Lijuan Zhang; Joohee Jang; Jangsoo Suh
The laser-diffraction technique has been applied to design a slit rheometer for measuring red blood cell deformability over a range of shear stress. A laser beam traverses a diluted blood suspension and is diffracted by RBCs in the volume. The diffraction patterns are captured by a CCD-video camera, linked to a frame grabber integrated with a computer. When deforming under decreasing shear stress, RBCs change gradually from the prolate ellipsoid towards a circular biconcave morphology. Both the laser-diffraction image and pressure were measured with respect to time. Which enable to determine the elongation index (EI) and the shear stress. The range of shear stress is 0~35 Pa and the measuring time is less than 2 min. The elongation index (EI) is determined from an isointensity curve in the diffraction pattern using an ellipse-fitting program. The key advantage of this design is the incorporation of a disposable element that holds the blood sample, which enables the present system to be easily used in a clinical setting.
Clinical Hemorheology and Microcirculation | 2007
Sehyun Shin; J.X. Hou; Jangsoo Suh; M. Singh
Clinical Hemorheology and Microcirculation | 2006
S. Shin; Myungsu Park; Yunhee Ku; Jangsoo Suh
Korea-australia Rheology Journal | 2005
S. Shin; J. H. Jang; Myungsu Park; Yunhee Ku; Jangsoo Suh
Korea-australia Rheology Journal | 2004
S. Shin; Myungsu Park; J. H. Jang; Yunhee Ku; Jangsoo Suh