Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janice L. Strap is active.

Publication


Featured researches published by Janice L. Strap.


Critical Reviews in Biotechnology | 2015

Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.

Anuj K. Chandel; Bruna Caroline Marques Gonçalves; Janice L. Strap; Silvio Silvério da Silva

Abstract Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production.


Frontiers in Microbiology | 2015

Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria.

Richard Vincent Augimeri; Andrew J. Varley; Janice L. Strap

Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host–bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3′→5′)-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host–bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles.


Systematic and Applied Microbiology | 2009

Diversity of aerobic and facultative alkalitolerant and halotolerant endospore formers in soil from the Alvord Basin, Oregon ☆

Stephanie A. Smith; James Benardini; Janice L. Strap; Ronald L. Crawford

Many proteins produced by Bacillus species isolated from extreme environments have been utilized for industrial purposes, as these extreme environments often promote evolution of unique protein properties. The Borax Lake area is unusual due to its geothermal activity, elevated pH, and high arsenic and salt concentrations in its soils. Soils from this region are likely to harbor alkalitolerant, halotolerant, endospore-forming strains that may be of potential ecological and/or commercial interest. The objectives of this study were to develop new PCR primers that could target Bacillus or closely related 16S rRNA genes, to characterize the diversity of alkalitolerant, halotolerant, endospore-forming organisms in the soils surrounding Borax Lake, and to identify novel organisms that may ultimately provide new enzymes for applied use. A three-pronged approach was used to identify such bacteria in soil samples. Organisms were isolated using two different techniques. Finally, metagenomic DNA from soil samples was subjected to 16S rRNA gene amplification using the newly designed primers. Assays were performed to characterize the halotolerance and alkalitolerance of isolates. Four different endospore-forming genera and 22 different species were identified by sequencing their 16S rRNA genes. Twenty-five organisms had 96% or less identity to known organisms. Thus, the newly designed Bacillus-related PCR primer sets proved useful for the detection of new species of endospore-forming bacteria in these unique soils. Results indicate that the collection of strains obtained from the Borax Lake region represents a rich source of alkalitolerant, halotolerant, endospore formers.


Archive | 2011

Actinobacteria–Plant Interactions: A Boon to Agriculture

Janice L. Strap

Plant diseases caused by soil-dwelling microorganisms are responsible for significant losses of agricultural crops each year. These losses are compounded in soils bearing insufficient micronutrients to adequately support plant health and development. While agrichemicals such as pesticides and fertilizers have played an important role in increasing crop production, the benefits have been overshadowed by damage to the environment, adverse human health effects, and the emergence of pesticide-resistant pathogens. Public perception of the risk posed by agrichemicals and their residues along with strict restrictions placed on the use of chemicals in agriculture have had serious negative economic impact. As a consequence, there is a growing market for alternative approaches to agricultural pest control and fertilization, fueled by the demand for chemical-free agricultural products. The development of microbial inoculants as plant growth promoters and biological control agents is a promising alternative to the use of agrochemicals. Actinobacteria are a group of Gram-positive bacteria that are ubiquitous in soil environments. Many species of Actinobacteria can colonize plant roots and surfaces. Additionally, they have the capacity to produce extracellular metabolites that not only enable them to outcompete phytopathogens but which also function as plant growth regulators. These qualities, among others, make Actinobacteria ideal candidates for development as microbial inoculants for use in agriculture.


Journal of Industrial Microbiology & Biotechnology | 2010

Isolation and characterization of potent antifungal strains of the Streptomyces violaceusniger clade active against Candida albicans

Min J. Kang; Janice L. Strap; D L Crawford

Streptomyces strains were isolated from a sagebrush rhizosphere soil sample on humic acid vitamin (HV) agar and water yeast extract (WYE) agar supplemented with 1.5% (w/w) phenol as a selective medium. Acidic, neutral and alkaline pH conditions were also used in the isolation procedures. The phenol treatment reduced the numbers of both actinomycetes and non-actinomycetes on plates under all three pH conditions. From phenol-amended HV and WYE agar, 16 strains were isolated in pure culture; 14 from the HV agar and two from the WYE agar. All the isolates were tested for their antifungal activities against Pythium ultimum P8 and five yeast strains, including two antifungal drug-resistant Candida albicans strains. HV isolates that showed broad-spectrum antifungal antibiotic activities were all found to be members of the Streptomyces violaceusniger clade, while those that did not were non-clade members. The phenol treatment was not selective for S. violaceusniger clade members. Therefore, we tested the spores of both S. violaceusniger clade and non-clade members using two biocides, phenol and hydrogen peroxide, as selection agents. Spores of non-clade members, such as S. coelicolor M145 and S. lividans TK 21, survived these two biocides just as well as S. violaceusniger clade members. Thus, in our hands, biocide resistance was not S. violaceusniger clade specific as previously reported. However, isolates showing broad-spectrum antifungal and antiyeast activity were all members of the clade. We conclude that screening of isolates for broad-spectrum antifungal/antiyeast activity is the preferred method of isolating S. violaceusniger clade strains rather than biocide-based selection. Phylogenetic analysis of the phenol-resistant isolates revealed that the HV isolates that exhibited broad-spectrum antifungal antibiotic activity were all clustered and closely related to the S. violaceusniger clade, while the isolates that did not exhibit antifungal antibiotic activity were all non-clade members.


PLOS ONE | 2011

Characterization of Pellicle Inhibition in Gluconacetobacter xylinus 53582 by a Small Molecule, Pellicin, Identified by a Chemical Genetics Screen

Janice L. Strap; Andrew Latos; Isaac Shim; Dario Bonetta

Pellicin ([2E]-3-phenyl-1-[2,3,4,5-tetrahydro-1,6-benzodioxocin-8-yl]prop-2-en-1-one) was identified in a chemical genetics screen of 10,000 small molecules for its ability to completely abolish pellicle production in Gluconacetobacter xylinus. Cells grown in the presence of pellicin grew 1.5 times faster than untreated cells. Interestingly, growth in pellicin also caused G. xylinus cells to elongate. Measurement of cellulose synthesis in vitro showed that cellulose synthase activity was not directly inhibited by pellicin. Rather, when cellulose synthase activity was measured in cells that were pre-treated with the compound, the rate of cellulose synthesis increased eight-fold over that observed for untreated cells. This phenomenon was also apparent in the rapid production of cellulose when cells grown in the presence of pellicin were washed and transferred to media lacking the inhibitor. The rate at which cellulose was produced could not be accounted for by growth of the organism. Pellicin was not detected when intracellular contents were analyzed. Furthermore, it was found that pellicin exerts its effect extracellularly by interfering with the crystallization of pre-cellulosic tactoidal aggregates. This interference of the crystallization process resulted in enhanced production of cellulose II as evidenced by the ratio of acid insoluble to acid soluble product in in vitro assays and confirmed in vivo by scanning electron microscopy and powder X-ray diffraction. The relative crystallinity index, RCI, of pellicle produced by untreated G. xylinus cultures was 70% while pellicin-grown cultures had RCI of 38%. Mercerized pellicle of untreated cells had RCI of 42%, which further confirms the mechanism of action of pellicin as an inhibitor of the cellulose I crystallization process. Pellicin is a useful tool for the study of cellulose biosynthesis in G. xylinus.


Frontiers in Microbiology | 2015

The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582

Richard Vincent Augimeri; Janice L. Strap

Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature.


Frontiers in Plant Science | 2018

Alleles Causing Resistance to Isoxaben and Flupoxam Highlight the Significance of Transmembrane Domains for CESA Protein Function

Isaac Shim; Robert Law; Zachary Kileeg; Patricia Stronghill; Julian G. B. Northey; Janice L. Strap; Dario Bonetta

The cellulose synthase (CESA) proteins in Arabidopsis play an essential role in the production of cellulose in the cell walls. Herbicides such as isoxaben and flupoxam specifically target this production process and are prominent cellulose biosynthesis inhibitors (CBIs). Forward genetic screens in Arabidopsis revealed that mutations that can result in varying degrees of resistance to either isoxaben or flupoxam CBI can be attributed to single amino acid substitutions in primary wall CESAs. Missense mutations were almost exclusively present in the predicted transmembrane regions of CESA1, CESA3, and CESA6. Resistance to isoxaben was also conferred by modification to the catalytic residues of CESA3. This resulted in cellulose deficient phenotypes characterized by reduced crystallinity and dwarfism. However, mapping of mutations to the transmembrane regions also lead to growth phenotypes and altered cellulose crystallinity phenotypes. These results provide further genetic evidence supporting the involvement of CESA transmembrane regions in cellulose biosynthesis.


Journal of Visualized Experiments | 2016

Utilizing the Ethylene-releasing Compound, 2-Chloroethylphosphonic Acid, as a Tool to Study Ethylene Response in Bacteria

Richard Vincent Augimeri; Andrew J. Varley; Janice L. Strap

Ethylene (C2H4) is a gaseous phytohormone that is involved in numerous aspects of plant development, playing a dominant role in senescence and fruit ripening. Exogenous ethylene applied during early plant development triggers the triple response phenotype; a shorter and thicker hypocotyl with an exaggerated apical hook. Despite the intimate relationship between plants and bacteria, the effect of exogenous ethylene on bacteria has been greatly overlooked. This is partly due to the difficulty of controlling gaseous ethylene within the laboratory without specialized equipment. 2-Chloroethylphosphonic acid (CEPA) is a compound that decomposes into ethylene, chlorine, and phosphate in a 1:1:1:1 molar ratio when dissolved in an aqueous medium of pH 3.5 or greater. Here we describe the use of CEPA to produce in situ ethylene for the investigation of ethylene response in bacteria using the fruit-associated, cellulose-producing bacterium Komagataeibacter xylinus as a model organism. The protocols described herein include both the verification of ethylene production from CEPA via the Arabidopsis thaliana triple response assay and the effects of exogenous ethylene on K. xylinus cellulose production, pellicle properties and colonial morphology. These protocols can be adapted to examine the effect of ethylene on other microbes using appropriate growth media and phenotype analyses. The use of CEPA provides researchers with a simple and efficient alternative to pure ethylene gas for the routine determination of bacterial ethylene response.


Acetic Acid Bacteria | 2013

The effect of phytohormones on the growth, cellulose production and pellicle properties of Gluconacetobacter xylinus ATCC 53582

Osama Qureshi; Hira Sohail; Andrew Latos; Janice L. Strap

Collaboration


Dive into the Janice L. Strap's collaboration.

Top Co-Authors

Avatar

Richard Vincent Augimeri

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Varley

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Latos

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dario Bonetta

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Isaac Shim

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min J. Kang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge