Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janice M. Pluth is active.

Publication


Featured researches published by Janice M. Pluth.


Radiation Research | 2008

Specific ATM-Mediated Phosphorylation Dependent on Radiation Quality

Mary K. Whalen; Sukhleen K. Gurai; Hengameh Zahed-Kargaran; Janice M. Pluth

Abstract Whalen, M. K., Gurai, S. K., Zahed-Kargaran, H. and Pluth, J. M. Specific ATM-Mediated Phosphorylation Dependent on Radiation Quality. Radiat. Res. 170, 353–364 (2008). To determine whether the physical differences between high- and low-LET radiation are reflected in the biological responses of exposed cells, we detailed phospho-protein profiles of three proteins functional in radiation repair and signal transduction. Detailing γ-H2AX, pATF2 Ser490/498 and pSMC1 Ser957 kinetics after X-ray and iron-ion exposure also provides a window into understanding the underlying cellular responses. Phosphorylated forms of these proteins have been documented to co-localize at sites of double-strand breaks (DSBs) after low-LET radiation exposures, and two of these phosphorylations, pATF2 and pSMC1, are specifically dependent on ATM. Flow cytometry-based methods were used to quantify total levels of each phospho-protein at various times after irradiation. As expected, we observed a greater induction and persistence in γ-H2AX after iron-ion (high-LET) exposure compared to X-ray (low-LET) exposure. In contrast, pATF2 and pSMC1 showed markedly lower induction levels after iron-ion exposure compared to equivalent doses of X rays. Quantification of pATF2 and pSMC1 foci revealed fewer cells containing foci and fewer foci per cell after iron-ion compared to X-ray exposure. These findings suggest that ATM responds to DSBs induced by high-LET radiation differently from DSBs induced by low-LET radiation.


Nucleic Acids Research | 2013

Novel Smad proteins localize to IR-induced double-strand breaks: interplay between TGFβ and ATM pathways

Minli Wang; Janapriya Saha; Megumi Hada; Jennifer A. Anderson; Janice M. Pluth; Peter O’Neill; Francis Cucinotta

Cellular damage from ionizing radiation (IR) is in part due to DNA damage and reactive oxygen species, which activate DNA damage response (DDR) and cytokine signaling pathways, including the ataxia telangiectasia mutated (ATM) and transforming growth factor (TGF)β/Smad pathways. Using classic double-strand breaks (DSBs) markers, we studied the roles of Smad proteins in DDR and the crosstalk between TGFβ and ATM pathways. We observed co-localization of phospho-Smad2 (pSmad2) and Smad7 with DSB repair proteins following low and high linear energy transfer (LET) radiation in human fibroblasts and epithelial cells. The decays of both foci were similar to that of γH2AX foci. Irradiation with high LET particles induced pSmad2 and Smad7 foci tracks indicating the particle trajectory through cells. pSmad2 foci were absent in S phase cells, while Smad7 foci were present in all phases of cell cycle. pSmad2 (but not Smad7) foci were completely abolished when ATM was depleted or inactivated. In contrast, a TGFβ receptor 1 (TGFβR1) inhibitor abrogated Smad7, but not pSmad2 foci at DSBs sites. In summary, we suggest that Smad2 and Smad7 contribute to IR-induced DSB signaling in an ATM or TGFβR1-dependent manner, respectively.


Radiation Research | 2015

Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation

Deepa Sridharan; Aroumougame Asaithamby; S. M. Bailey; Sylvain V. Costes; P. W. Doetsch; W. S. Dynan; Amy Kronenberg; K. N. Rithidech; Janapriya Saha; Antoine M. Snijders; E. Werner; Claudia Wiese; Francis Cucinotta; Janice M. Pluth

During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.


Radiation Research | 2009

Dose Response of γ Rays and Iron Nuclei for Induction of Chromosomal Aberrations in Normal and Repair-Deficient Cell Lines

K. George; Megumi Hada; Lori Jackson; Todd Elliott; Tetsuya Kawata; Janice M. Pluth; Francis A. Cucinotta

Abstract George, K. A., Hada, M., Jackson, L. J., Elliott, T., Kawata, T., Pluth, J. M. and Cucinotta, F. A. Dose Response for c Rays and Iron Nuclei for Induction of Chromosomal Aberrations in Normal and Repair-Deficient Cell Lines. Radiat. Res. 171, 752–763 (2009). We studied the effects of DNA double-strand break (DSB) repair deficiencies on chromosomal aberration frequency using low doses (<1 Gy) of γ rays and high-energy iron ions (LET  =  151 keV/µm). Chromosomal aberrations were measured using the fluorescence whole-chromosome painting technique. The cell lines included fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) and gliomablastoma cells proficient in or lacking DNA-dependent protein kinase (DNA-PK) activity. The yields of both simple and complex chromosomal aberrations were increased in DSB repair-defective cells compared to normal cells; the increase was more than twofold higher for γ rays compared to iron nuclei. For γ-ray-induced aberrations, the ATM- and NBS-defective lines were found to have significantly larger quadratic components compared to normal fibroblasts for both simple and complex aberrations, while the linear dose–response term was significantly higher only for the NBS cells. For simple and complex aberrations induced by iron nuclei, regression models preferred purely linear and quadratic dose responses, respectively, for each cell line studied. RBEs were reduced relative to normal cells for all of the DSB repair-defective lines, with the DNA-PK-deficient cells found to have RBEs near unity. The large increase in the quadratic dose–response terms in the DSB repair-deficient cell lines points to the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and to minimize aberration formation. The differences found between AT and NBS cells at lower doses suggest important questions about the applicability of observations of radiation sensitivity at high doses to low-dose exposures.


Radiation Research | 2015

Defining the Biological Effectiveness of Components of High-LET Track Structure

Deepa Sridharan; Lori J. Chappell; Mary K. Whalen; Francis A. Cucinotta; Janice M. Pluth

During space travel, astronauts are exposed to a wide array of high-linear energy transfer (LET) particles, with differing energies and resulting biological effects. Risk assessment of these exposures carries a large uncertainty predominantly due to the unique track structure of the particles energy deposition. The complex damage elicited by high charge and energy (HZE) particles results from both lesions along the track core and from energetic electrons, δ rays, generated as a consequence of particle traversal. To better define how cells respond to this complex radiation exposure, a normal hTERT immortalized skin fibroblast cell line was exposed to a defined panel of particles carefully chosen to tease out track structure effects. Phosphorylation kinetics for several key double-strand break (DSB) response proteins (γ-H2AX, pATF2 and pSMC1) were defined after exposure to ten different high-LET radiation qualities and one low-LET radiation (X ray), at two doses (0.5–2 Gy) and time points (2 and 24 h). The results reveal that the lower energy particles (Fe 300, Si 93 and Ti 300 MeV/u), with a narrower track width and higher number and intensity of δ rays, cause the highest degree of persistent damage response. The persistent γ-H2AX signal at lower energies suggests that damage from these exposures are more difficult to resolve, likely due to the greater complexity of the associated DNA lesions. However, different kinetics were observed for the solely ATM-mediated phosphorylations (pATF2 and pSMC1), revealing a shallow induction at early times and a higher level of residual phosphorylation compared to γ-H2AX. The differing phospho-protein profiles exhibited, compared to γ-H2AX, suggests additional functions for these proteins within the cell. The strong correspondence between the predicted curves for energy deposition per nucleosome for each ion/energy combination and the persistent levels of γ-H2AX indicates that the nature of energy distribution defines residual levels of γ-H2AX, an indicator of unrepaired DSBs. Our results suggest that decreasing the energy of a particle results in more complex damage that may increase genomic instability and increase the risk of carcinogenesis.


PLOS ONE | 2012

Protons sensitize epithelial cells to mesenchymal transition

Minli Wang; Megumi Hada; Janapriya Saha; Deepa Sridharan; Janice M. Pluth; Francis A. Cucinotta

Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.


Radiation Research | 2010

Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics after Exposure to X Rays and High-Energy Iron Nuclei

Lori J. Chappell; Mary K. Whalen; Sheena Gurai; Artem L. Ponomarev; Francis A. Cucinotta; Janice M. Pluth

Abstract We developed a mathematical method to analyze flow cytometry data to describe the kinetics of γ-H2AX and pATF2 phosphorylation in normal human fibroblast cells after exposure to various qualities of low-dose radiation. Previously reported flow cytometry kinetics for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low-dose range. Distributional analysis revealed significant differences between control and low-dose samples when distributions were compared using the Kolmogorov-Smirnov test. Differences in radiation quality were found in the distribution shapes and when a nonlinear model was used to relate dose and time to the decay of the mean ratio of phospho-protein intensities of irradiated samples to controls. We analyzed cell cycle phase- and radiation quality-dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for γ-H2AX were higher after exposure to iron nuclei compared to X rays in G1 cells and in S/G2 cells. The RBE in G1 cells for iron nuclei relative to X rays for γ-H2AX was 2.1 ± 0.6 and 5.0 ± 3.5 at 2 and 24 h after irradiation, respectively. For pATF2, a saturation effect was observed with reduced expression at high doses, especially for iron nuclei, with much slower characteristic repair times (>7 h) compared to X rays. RBEs for pATF2 were 0.7 ± 0.1 and 1.7 ± 0.5 at 2 and 24 h, respectively. Significant differences in γ-H2AX and pATF2 levels when irradiated samples were compared to controls were noted even at the lowest dose analyzed (0.05 Gy). These results show that mathematical models can be applied to flow cytometry data to identify important and subtle differences after exposure to various qualities of low-dose radiation.


Molecular Cell | 2016

Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability.

Kelly S. Trego; Torsten Groesser; Albert R. Davalos; Ann C. Parplys; Weixing Zhao; Michael R. Nelson; Ayesu Hlaing; Brian Shih; Björn Rydberg; Janice M. Pluth; Miaw-Sheue Tsai; Jan H.J. Hoeijmakers; Patrick Sung; Claudia Wiese; Judith Campisi; Priscilla K. Cooper

XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatin binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. These unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.


Mutation Research | 2011

AT cells are not radiosensitive for simple chromosomal exchanges at low dose

Megumi Hada; Janice L. Huff; Zarana S. Patel; Tetsuya Kawata; Janice M. Pluth; K. George; Francis A. Cucinotta

Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5Gy) of ionizing radiation (X-rays or γ-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1Gy and higher, but were similar to wild type cells at 0.5Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.


Life sciences in space research | 2016

Evaluating biomarkers to model cancer risk post cosmic ray exposure.

Deepa Sridharan; Aroumougame Asaithamby; Steve R. Blattnig; Sylvain V. Costes; Paul W. Doetsch; William S. Dynan; Philip Hahnfeldt; Lynn Hlatky; Yared Kidane; Amy Kronenberg; Mamta Naidu; Leif E. Peterson; Ianik Plante; Artem L. Ponomarev; Janapriya Saha; Antoine M. Snijders; Kalayarasan Srinivasan; Jonathan Tang; Erica Werner; Janice M. Pluth

Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.

Collaboration


Dive into the Janice M. Pluth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepa Sridharan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Megumi Hada

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mary K. Whalen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter O'Neill

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Artem L. Ponomarev

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

Janice L. Huff

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

Lori J. Chappell

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

Minli Wang

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Janapriya Saha

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge