Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janina Demeler is active.

Publication


Featured researches published by Janina Demeler.


Veterinary Parasitology | 2009

Monitoring the efficacy of ivermectin and albendazole against gastro intestinal nematodes of cattle in Northern Europe

Janina Demeler; A. Van Zeveren; Nina Kleinschmidt; Jozef Vercruysse; Johan Höglund; Regine Koopmann; J. Cabaret; Edwin Claerebout; Marlene Areskog; G. von Samson-Himmelstjerna

Faecal egg count reduction tests (FECRT) using ivermectin (IVM) and benzimidazole (BZ) were conducted to investigate the prevalence of anthelmintic resistance in gastro-intestinal nematodes on cattle farms in Germany, Belgium and Sweden in 2006 and 2007. Based on sufficient numbers of eggs prior to the study, between 3 and 10 farms per country were selected. 10-15 animals were randomly selected per farm and subcutaneously treated with 0.2 mg IVM/kg bodyweight (Ivomec, Merial). Faecal samples were collected individually from every animal on day 0 (treatment), day 7 (Belgium & Sweden) or 14 (Germany), and day 21 (Germany, Belgium and Sweden). Faecal egg counts (FEC) were performed at each sampling occasion to estimate the eggs per gram of faeces (EPG) and the reduction of eggs after treatment. The FECRT using IVM in 2006 revealed mean reduction of egg counts between 69-100% on day 7/14 (95% confidence interval (CI) 19-102) and 35-96% (95% CI 0-102) on day 21. Farms with a suggested problem of anthelmintic resistance have been re-visited in 2007 and except for one case all results obtained in 2006 were confirmed in 2007. Larvae obtained from faecal cultures were identified using microscopic identification keys or genus-specific real time PCR. Cooperia oncophora was the predominant species detected after treatment, but Ostertagia ostertagi was found in samples on 3 farms in Germany and 3 farms in Sweden post-treatment. In 2007 additionally a FECRT using benzimidazoles was conducted in Germany and Sweden. In Germany oral Valbazen (albendazole, 10%, Pfizer) was used at a concentration of 7.5 mg albendazole/kg bodyweight; in Sweden Valbazen Vet (albendazole, 10%, Orion Pharma) at a dose of 8 mg/kg was used. For benzimidazoles an efficacy of 100% was obtained on all tested farms in both countries. This is the first report of a multinational anthelmintic efficacy investigation in cattle in Europe. The results suggest that testing of anthelmintic efficacy should be performed more intensively due to possible insufficient efficacy of current drugs.


Parasites & Vectors | 2009

Anthelmintic resistance in cyathostomin populations from horse yards in Italy, United Kingdom and Germany.

Donato Traversa; Georg von Samson-Himmelstjerna; Janina Demeler; Piermarino Milillo; S. Schürmann; Helen Barnes; Domenico Otranto; Stefania Perrucci; Antonio Frangipane di Regalbono; Paola Beraldo; Albert Boeckh; Rami Cobb

BackgroundA large survey was carried out in 2008 in Europe to evaluate the efficacy of fenbendazole (FBZ), pyrantel (PYR), ivermectin (IVM) and moxidectin (MOX), i.e. the major anthelmintic molecules used in current practice against cyathostomins affecting horses. A total of 102 yards and 1704 horses was studied in three countries: 60 yards and 988 horses from Italy, 22 and 396 from the UK, 20 and 320 from Germany. The survey consisted of Faecal Egg Count Reduction Tests (FECRTs) with a faecal egg count reduction (FECR) categorization of (I) resistance present if FECR <90% and the lower 95% confidence limit (LCL) <90%, (II) resistance suspected if FECR ≥ 90% and/or LCL <90% and (III) no resistance if FECR ≥ 90% and LCL >90%. The calculation of FECR data was performed employing bootstrap analysis of group arithmetic means.ResultsThe testing of FBZ on a total of 80 yards resulted in resistance present on more than 80% of the UK and German yards and on significantly fewer in Italy, i.e. in 38% (p < 0.01). PYR, IVM and MOX were tested on a total of 102 yards. For PYR resistance present was found in 25% of the yards with no significant differences between countries. For IVM resistance present was encountered in one Italian and two UK yards (3%), resistance present to MOX was not found in any yard in any country.ConclusionThe results indicate that single and/or multiple drug resistance in equine cyathostomins is present in the three countries, is widespread particularly for FBZ and/or PYR and in one UK yard multiple resistance present was detected to FBZ, PYR and IVM. Macrocylic lactones proved to be the most effective drugs, with some evidence of resistance to IVM and highest activity of MOX, despite a single case of reduced efficacy in Germany. These data call for the development and implementation, among practitioners, owners and managers, of further plans to reduce the expansion of the anthelmintic resistant populations and to use those anthelmintics that remain effective in a manner that preserves their efficacy as long as possible.


International Journal for Parasitology-Drugs and Drug Resistance | 2014

Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions

Andrew C. Kotze; Peter W. Hunt; Philip Skuce; Georg von Samson-Himmelstjerna; Richard J. Martin; Heinz Sager; Jürgen Krücken; Jane E. Hodgkinson; Anne Lespine; Aaron R. Jex; John S. Gilleard; Robin N. Beech; Adrian J. Wolstenholme; Janina Demeler; Alan P. Robertson; Claude L. Charvet; Cedric Neveu; Ronald Kaminsky; Lucien Rufener; Melanie Alberich; Cécile Ménez; Roger K. Prichard

Graphical abstract


Parasitology Research | 2009

Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes.

Georg von Samson-Himmelstjerna; G. C. Coles; Frank Jackson; Christian Bauer; Fred H.M. Borgsteede; Veli Yilgor Cirak; Janina Demeler; Alison Donnan; Pierre Dorny; Christian Epe; Achim Harder; Johan Höglund; Ronald Kaminsky; Dominique Kerboeuf; Ulla Küttler; E. Papadopoulos; Janez Posedi; John Small; Marián Várady; Jozef Vercruysse; N. Wirtherle

The ability to reliably detect anthelmintic resistance is a crucial part of resistance management. If data between countries are to be compared, the same test should give the same results in each laboratory. As the egg hatch test for benzimidazole resistance is used for both research and surveys, the ability of different laboratories to obtain similar results was studied through testing of known isolates of cyathostomins, Haemonchus contortus, Ostertagia ostertagi, and Cooperia oncophora in programs supported by the EU (Cost B16 and FP6-PARASOL). Initial results showed difficulties in obtaining reproducible and similar data within and between laboratories. A series of ring tests, i.e., simultaneous and coordinated rounds of testing of nematode isolates in different laboratories was subsequently performed. By adopting identical protocols, especially the use of deionized water and making dilutions of thiabendazole in dimethyl sulfoxide in the final ring test, laboratories correctly identified both susceptible and resistant isolates. The protocols for the test and preparation of solutions of thiabendazole are described.


Veterinary Parasitology | 2010

Adaptation and evaluation of three different in vitro tests for the detection of resistance to anthelmintics in gastro intestinal nematodes of cattle

Janina Demeler; Ursula Küttler; G. von Samson-Himmelstjerna

Three different in vitro methods, the Larval Development Test (LDT), the Larval Migration Inhibition Test (LMIT) and the Micromotility Meter Test (MMT) have been adapted to detect anthelmintic resistance in cattle nematodes. Nematode eggs and third stage larvae of different Ostertagia ostertagi and Cooperia oncophora isolates were obtained from faecal cultures of experimentally infected calves. Additionally, adult C. oncophora were evaluated in the MMT for the detection of resistance to ivermectin (IVM). For all three in vitro tests standard operating procedures (SOPs) were established and successfully used for the detection of responses of non-parasitic and parasitic stages to different anthelmintic substances and the description of dose-response curves. In the LDT ivermectin (IVM) and thiabendazole (TBZ) were tested, in the LMIT IVM and levamisole (LEV) and in the MMT only IVM was evaluated. Susceptible isolates of C. oncophora and O. ostertagi, an IVM-resistant isolate of C. oncophora and a TBZ-selected isolate of O. ostertagi were used in all (C. oncophora) or only some of these tests (O. ostertagi). For all isolates sigmoidal dose-response curves and EC(50) values for the tested substances were obtained using a four-parameter logistic model. For the LDT, the previously reported problem in development of larvae was successfully overcome with mean development rates between 80% and 87% in negative controls. Following optimization of incubation times, temperatures, mesh sizes (LMIT only), nutritive medium (LDT only) and group size (MMT only) all three test systems reliably detected significant differences in the response to IVM between the susceptible and IVM-resistant isolate of C. oncophora (p<0.0001), resulting in an resistance ratio (RR) value of approximately 5 for IVM and 2.8 for LEV in C. oncophora. The LDT also detected differences in the response to TBZ between the susceptible and BZ-selected O. ostertagi isolates (p<0.001) with an RR of 2 for TBZ. With the standardization of the described tests we report reproducible and reliable in vitro methods for the detection of resistance to IVM (LDT, LMIT and MMT) and TBZ (LDT) for cattle parasitic nematodes.


Animal | 2013

Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe - a review

Matthias Gauly; Heinrich Bollwein; Gerhard Breves; K. Brügemann; Sven Dänicke; Gürbüz Daş; Janina Demeler; Heiko Hansen; J. Isselstein; S. König; Malte Lohölter; Maria Martinsohn; Ulrich Meyer; M. Potthoff; C. Sanker; B. Schröder; N. Wrage; B. Meibaum; G. von Samson-Himmelstjerna; H. Stinshoff; C. Wrenzycki

It is well documented that global warming is unequivocal. Dairy production systems are considered as important sources of greenhouse gas emissions; however, little is known about the sensitivity and vulnerability of these production systems themselves to climate warming. This review brings different aspects of dairy cow production in Central Europe into focus, with a holistic approach to emphasize potential future consequences and challenges arising from climate change. With the current understanding of the effects of climate change, it is expected that yield of forage per hectare will be influenced positively, whereas quality will mainly depend on water availability and soil characteristics. Thus, the botanical composition of future grassland should include species that are able to withstand the changing conditions (e.g. lucerne and birds foot trefoil). Changes in nutrient concentration of forage plants, elevated heat loads and altered feeding patterns of animals may influence rumen physiology. Several promising nutritional strategies are available to lower potential negative impacts of climate change on dairy cow nutrition and performance. Adjustment of feeding and drinking regimes, diet composition and additive supplementation can contribute to the maintenance of adequate dairy cow nutrition and performance. Provision of adequate shade and cooling will reduce the direct effects of heat stress. As estimated genetic parameters are promising, heat stress tolerance as a functional trait may be included into breeding programmes. Indirect effects of global warming on the health and welfare of animals seem to be more complicated and thus are less predictable. As the epidemiology of certain gastrointestinal nematodes and liver fluke is favourably influenced by increased temperature and humidity, relations between climate change and disease dynamics should be followed closely. Under current conditions, climate change associated economic impacts are estimated to be neutral if some form of adaptation is integrated. Therefore, it is essential to establish and adopt mitigation strategies covering available tools from management, nutrition, health and plant and animal breeding to cope with the future consequences of climate change on dairy farming.


International Journal for Parasitology-Drugs and Drug Resistance | 2015

Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe.

Thomas Geurden; Christophe Chartier; Jane Fanke; Antonio Frangipane di Regalbono; Donato Traversa; Georg von Samson-Himmelstjerna; Janina Demeler; Hima Bindu Vanimisetti; David J. Bartram; Matthew J. Denwood

Anthelmintic resistance has been increasingly reported in cattle worldwide over the last decade, although reports from Europe are more limited. The objective of the present study was to evaluate the efficacy of injectable formulations of ivermectin and moxidectin at 0.2 mg per kg bodyweight against naturally acquired gastro-intestinal nematodes in cattle. A total of 753 animals on 40 farms were enrolled in Germany (12 farms), the UK (10 farms), Italy (10 farms), and France (8 farms). Animals were selected based on pre-treatment faecal egg counts and were allocated to one of the two treatment groups. Each treatment group consisted of between 7 and 10 animals. A post-treatment faecal egg count was performed 14 days (±2 days) after treatment. The observed percentage reduction was calculated for each treatment group based on the arithmetic mean faecal egg count before and after treatment. The resistance status was evaluated based on the reduction in arithmetic mean faecal egg count and both the lower and upper 95% confidence limits. A decreased efficacy was observed in half or more of the farms in Germany, France and the UK. For moxidectin, resistance was confirmed on 3 farms in France, and on 1 farm in Germany and the UK. For ivermectin, resistance was confirmed on 3 farms in the UK, and on 1 farm in Germany and France. The remaining farms with decreased efficacy were classified as having an inconclusive resistance status based on the available data. After treatment Cooperia spp. larvae were most frequently identified, though Ostertagia ostertagi was also found, in particular within the UK and Germany. The present study reports lower than expected efficacy for ivermectin and moxidectin (based on the reduction in egg excretion after treatment) on European cattle farms, with confirmed anthelmintic resistance on 12.5% of the farms.


Veterinary Parasitology | 2010

Standardization of the larval migration inhibition test for the detection of resistance to ivermectin in gastro intestinal nematodes of ruminants

Janina Demeler; Ursula Küttler; Abdelkarim El-Abdellati; Kathryn Stafford; A. Rydzik; Marián Várady; Fiona Kenyon; G. C. Coles; Johan Höglund; F. Jackson; Jozef Vercruysse; G. von Samson-Himmelstjerna

Resistance to anthelmintics is an increasing problem in sheep, goat and cattle industries worldwide. For parasite management on farms reliable methods for the detection of resistance are required and it is important that tests give comparable, reproducible and reliable results in different laboratories. The ability of the larval migration inhibition test (LMIT), to detect ivermectin resistance in cattle and sheep nematodes has been evaluated through ring testing in up to six different laboratories in Europe, supported by an EU sixth Framework Project (PARASOL). Third stage larvae of Ostertagia ostertagi, Cooperia oncophora, and Haemonchus contortus with a known resistance status were obtained from faecal cultures of experimentally infected calves and sheep. Following a series of ring tests using identical protocols, reproducible results were obtained within and between participating laboratories. In all tests dose-response curves with R(2) values >0.90 were obtained by all laboratories. Resistance ratios of 8.3 and 8.4 were found when susceptible and IVM-resistant isolates of C. oncophora and H. contortus were compared and differences in the EC(50) values were highly significant (p<0.0001). Protocols for the LMIT and the preparation of ivermectin solutions are described in a supplementary file.


Veterinary Parasitology | 2010

Epidemiology and risk factors for exposure to gastrointestinal nematodes in dairy herds in northwestern Europe

Sita Bennema; Jozef Vercruysse; Eric R. Morgan; Kathryn Stafford; Johan Höglund; Janina Demeler; Georg von Samson-Himmelstjerna; Johannes Charlier

In this survey, the epidemiology of gastrointestinal (GI) nematodes in dairy herds in five northwestern European countries was studied using a standardized Ostertagia ostertagi ELISA applied on bulk-tank milk, and a common questionnaire. The levels of exposure to GI nematodes were high in Belgium, the UK and Ireland, intermediate in Germany and low in Sweden, with a mean (95% confidence interval) ELISA result (ODR) of 0.83 (0.82-0.84) in Belgium, 0.82 (0.79-0.84) in the UK and 0.80 (0.78-0.83) in Ireland; significantly higher than the mean ODR of 0.66 (0.65-0.68) in Germany and 0.52 (0.51-0.53) in Sweden. Taking into account previous literature, these regional differences are likely to be systematic. Regional variations in exposure were significantly explained by differences in management (grazing time per day, mowing, the months of turnout, housing and anthelmintic treatment). However, after controlling for these factors, significant regional differences in levels of exposure remained, suggesting an importance for climate (temperature, rainfall) and unmeasured management factors. This study emphasizes that GI nematode-induced production losses should be considered on a large percentage of northwest European dairy herds. Proposals are made for the development of region-specific monitoring and control strategies. Further advances in this area are likely to come from intervention studies that investigate the feasibility of control measures and from studies on the potential effects of climatic conditions on shifts in levels of exposure between years and regions.


Veterinary Record | 2014

Practices to optimise gastrointestinal nematode control on sheep, goat and cattle farms in Europe using targeted (selective) treatments

Johannes Charlier; Eric R. Morgan; Laura Rinaldi; J.C. van Dijk; Janina Demeler; Johan Höglund; Hubertus Hertzberg; B Van Ranst; Guy Hendrickx; Jozef Vercruysse; Fiona Kenyon

Due to the development of anthelmintic resistance, there have been calls for more sustainable nematode control practices. Two important concepts were introduced to study and promote the sustainable use of anthelmintics: targeted treatments (TT), where the whole flock/herd is treated based on knowledge of the risk, or parameters that quantify the severity of infection; and targeted selective treatments (TST), where only individual animals within the grazing group are treated. The aim of the TT and TST approaches is to effectively control nematode-induced production impacts while preserving anthelmintic efficacy by maintaining a pool of untreated parasites in refugia. Here, we provide an overview of recent studies that assess the use of TT/TST against gastrointestinal nematodes in ruminants and investigate the economic consequences, feasibility and knowledge gaps associated with TST. We conclude that TT/TST approaches are ready to be used and provide practical benefits today. However, a major shift in mentality will be required to make these approaches common practice in parasite control.

Collaboration


Dive into the Janina Demeler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Höglund

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge