Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janine M. LaSalle is active.

Publication


Featured researches published by Janine M. LaSalle.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes

Dag H. Yasui; Sailaja Peddada; Mark Bieda; Roxanne O. Vallero; Amber Hogart; Raman P. Nagarajan; Karen N. Thatcher; Peggy J. Farnham; Janine M. LaSalle

Mutations in MECP2 cause the autism-spectrum disorder Rett syndrome. MeCP2 is predicted to bind to methylated promoters and silence transcription. However, the first large-scale mapping of neuronal MeCP2-binding sites on 26.3 Mb of imprinted and nonimprinted loci revealed that 59% of MeCP2-binding sites are outside of genes and that only 6% are in CpG islands. Integrated genome-wide promoter analysis of MeCP2 binding, CpG methylation, and gene expression revealed that 63% of MeCP2-bound promoters are actively expressed and that only 6% are highly methylated. These results indicate that the primary function of MeCP2 is not the silencing of methylated promoters.


Epigenetics | 2006

Reduced MeCP2 Expression is Frequent in Autism Frontal Cortex and Correlates with Aberrant MECP2 Promoter Methylation

Raman P. Nagarajan; Amber Hogart; Ynnez Gwye; Michelle R. Martin; Janine M. LaSalle

Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are “pervasive developmental disorders” and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism.


Science | 1996

Homologous Association of Oppositely Imprinted Chromosomal Domains

Janine M. LaSalle; Marc Lalande

Human chromosome 15q11-q13 encompasses the Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) loci, which are subject to parental imprinting, a process that marks the parental origin of certain chromosomal subregions. A temporal and spatial association between maternal and paternal chromosomes 15 was observed in human T lymphocytes by three-dimensional fluorescence in situ hybridization. This association occurred specifically at the imprinted 15q11-q13 regions only during the late S phase of the cell cycle. Cells from PWS and AS patients were deficient in association, which suggests that normal imprinting involves mutual recognition and preferential association of maternal and paternal chromosomes 15.


The Journal of Neuroscience | 2009

Rett Syndrome Astrocytes Are Abnormal and Spread MeCP2 Deficiency through Gap Junctions

Izumi Maezawa; Susan E. Swanberg; Danielle Harvey; Janine M. LaSalle; Lee Way Jin

MECP2, an X-linked gene encoding the epigenetic factor methyl-CpG-binding protein-2, is mutated in Rett syndrome (RTT) and aberrantly expressed in autism. Most children affected by RTT are heterozygous Mecp2 −/+ females whose brain function is impaired postnatally due to MeCP2 deficiency. While prior functional investigations of MeCP2 have focused exclusively on neurons and have concluded the absence of MeCP2 in astrocytes, here we report that astrocytes express MeCP2, and MeCP2 deficiency in astrocytes causes significant abnormalities in BDNF regulation, cytokine production, and neuronal dendritic induction, effects that may contribute to abnormal neurodevelopment. In addition, we show that the MeCP2 deficiency state can progressively spread at least in part via gap junction communications between mosaic Mecp2 −/+ astrocytes in a novel non-cell-autonomous mechanism. This mechanism may lead to the pronounced loss of MeCP2 observed selectively in astrocytes in mouse Mecp2 −/+ brain, which is coincident with phenotypic regression characteristic of RTT. Our results suggest that astrocytes are viable therapeutic targets for RTT and perhaps regressive forms of autism.


Neurobiology of Disease | 2010

The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13.

Amber Hogart; David Wu; Janine M. LaSalle; N. Carolyn Schanen

A cluster of low copy repeats on the proximal long arm of chromosome 15 mediates various forms of stereotyped deletions and duplication events that cause a group of neurodevelopmental disorders that are associated with autism or autism spectrum disorders (ASD). The region is subject to genomic imprinting and the behavioral phenotypes associated with the chromosome 15q11.2-q13 disorders show a parent-of-origin specific effect that suggests that an increased copy number of maternally derived alleles contributes to autism susceptibility. Notably, nonimprinted, biallelically expressed genes within the interval also have been shown to be misexpressed in brains of patients with chromosome 15q11.2-q13 genomic disorders, indicating that they also likely play a role in the phenotypic outcome. This review provides an overview of the phenotypes of these disorders and their relationships with ASD and outlines the regional genes that may contribute to the autism susceptibility imparted by copy number variation of the region.


Proceedings of the National Academy of Sciences of the United States of America | 2013

The human placenta methylome

Diane I. Schroeder; John D. Blair; Paul Lott; Hung On Ken Yu; Danna Hong; Florence K. Crary; Paul Ashwood; Cheryl Walker; Ian Korf; Wendy P. Robinson; Janine M. LaSalle

Tissue-specific DNA methylation is found at promoters, enhancers, and CpG islands but also over larger genomic regions. In most human tissues, the vast majority of the genome is highly methylated (>70%). Recently, sequencing of bisulfite-treated DNA (MethylC-seq) has revealed large partially methylated domains (PMDs) in some human cell lines. PMDs cover up to 40% of the genome and are associated with gene repression and inactive chromatin marks. However, to date, only cultured cells and cancers have shown evidence for PMDs. Here, we performed MethylC-seq in full-term human placenta and demonstrate it is the first known normal tissue showing clear evidence of PMDs. We found that PMDs cover 37% of the placental genome, are stable throughout gestation and between individuals, and can be observed with lower sensitivity in Illumina 450K Infinium data. RNA-seq analysis confirmed that genes in PMDs are repressed in placenta. Using a hidden Markov model to map placental PMDs genome-wide and compare them to PMDs in other cell lines, we found that genes within placental PMDs have tissue-specific functions. For regulatory regions, methylation levels in promoter CpG islands are actually higher for genes within placental PMDs, despite the lower overall methylation of surrounding regions. Similar to PMDs, polycomb-regulated regions are hypomethylated but smaller and distinct from PMDs, with some being hypermethylated in placenta compared with other tissues. These results suggest that PMDs are a developmentally dynamic feature of the methylome that are relevant for understanding both normal development and cancer and may be of use as epigenetic biomarkers.


Current Psychiatry Reports | 2010

The Role of MeCP2 in Brain Development and Neurodevelopmental Disorders

Michael L. Gonzales; Janine M. LaSalle

Methyl CpG binding protein-2 (MeCP2) is an essential epigenetic regulator in human brain development. Rett syndrome, the primary disorder caused by mutations in the X-linked MECP2 gene, is characterized by a period of cognitive decline and development of hand stereotypies and seizures following an apparently normal early infancy. In addition, MECP2 mutations and duplications are observed in a spectrum of neurodevelopmental disorders, including severe neonatal encephalopathy, X-linked mental retardation, and autism, implicating MeCP2 as an essential regulator of postnatal brain development. In this review, we compare the mutation types and inheritance patterns of the human disorders associated with MECP2. In addition, we summarize the current understanding of MeCP2 as a central epigenetic regulator of activity-dependent synaptic maturation. As MeCP2 occupies a central role in the pathogenesis of multiple neurodevelopmental disorders, continued investigation into MeCP2 function and regulatory pathways may show promise for developing broad-spectrum therapies.


Journal of Molecular Medicine | 2003

Elevated methyl-CpG-binding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation

Damina Balmer; Jared Goldstine; Y. Manjula Rao; Janine M. LaSalle

Rett syndrome is caused by mutations in MECP2 and characterized by arrested postnatal neurodevelopment. MECP2 is ubiquitously expressed, but its protein product, methyl-CpG-binding protein 2 (MeCP2), is highly expressed in a subpopulation of cells in the adult brain. Automated quantitation of MeCP2 expression on a human developmental tissue microarray was performed by laser scanning cytometry. A significant correlation between age and MeCP2 level, population heterogeneity, and percentage of MeCP2 high-expressing cells was specifically observed in cerebral but not renal samples. In contrast, an inverse correlation between use of the long 3′ UTR of MECP2 and age was observed, suggesting that an acquired switch in polyadenylation is responsible for the elevated MeCP2. Acquired elevated MeCP2 expression in neurons beginning in infancy and progressing through childhood may explain the delayed onset and developmental arrest of Rett syndrome


Journal of Medical Genetics | 2008

Chromosome 15q11–13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number

Amber Hogart; Karen N. Leung; N J Wang; David Wu; Jennette Driscoll; Roxanne O. Vallero; N C Schanen; Janine M. LaSalle

Background: Chromosome 15q11–13 contains a cluster of imprinted genes essential for normal mammalian neurodevelopment. Deficiencies in paternal or maternal 15q11–13 alleles result in Prader–Willi or Angelman syndromes, respectively, and maternal duplications lead to a distinct condition that often includes autism. Overexpression of maternally expressed imprinted genes is predicted to cause 15q11–13-associated autism, but a link between gene dosage and expression has not been experimentally determined in brain. Methods: Postmortem brain tissue was obtained from a male with 15q11–13 hexasomy and a female with 15q11–13 tetrasomy. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure 10 15q11–13 transcripts in maternal 15q11–13 duplication, Prader–Willi syndrome, and control brain samples. Southern blot, bisulfite sequencing and fluorescence in situ hybridisation were used to investigate epigenetic mechanisms of gene regulation. Results: Gene expression and DNA methylation correlated with parental gene dosage in the male 15q11–13 duplication sample with severe cognitive impairment and seizures. Strikingly, the female with autism and milder Prader–Willi-like characteristics demonstrated unexpected deficiencies in the paternally expressed transcripts SNRPN, NDN, HBII85, and HBII52 and unchanged levels of maternally expressed UBE3A compared to controls. Paternal expression abnormalities in the female duplication sample were consistent with elevated DNA methylation of the 15q11–13 imprinting control region (ICR). Expression of non-imprinted 15q11–13 GABA receptor subunit genes was significantly reduced specifically in the female 15q11–13 duplication brain without detectable GABRB3 methylation differences. Conclusion: Our findings suggest that genetic copy number changes combined with additional genetic or environmental influences on epigenetic mechanisms impact outcome and clinical heterogeneity of 15q11–13 duplication syndromes.


Epigenomics | 2009

Evolving role of MeCP2 in Rett syndrome and autism

Janine M. LaSalle; Dag H. Yasui

Rett syndrome is an X-linked autism-spectrum disorder caused by mutations in MECP2, encoding methyl CpG-binding protein 2. Since the discovery of MECP2 mutations as the genetic cause of Rett syndrome, the understanding of MeCP2 function has evolved. Although MeCP2 was predicted to be a global transcriptional repressor of methylated promoters, large-scale combined epigenomic approaches of MeCP2 binding, methylation and gene expression have demonstrated that MeCP2 binds preferentially to intergenic and intronic regions, and sparsely methylated promoters of active genes. This review compares the evolution of thought within two ‘classic’ epigenetic mechanisms of parental imprinting and X chromosome inactivation to that of the MeCP2 field, and considers the future relevance of integrated epigenomic databases to understanding autism and Rett syndrome.

Collaboration


Dive into the Janine M. LaSalle's collaboration.

Top Co-Authors

Avatar

Dag H. Yasui

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence T. Reiter

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber Hogart

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stormy J. Chamberlain

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge