Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janis A. Müller is active.

Publication


Featured researches published by Janis A. Müller.


Cell Host & Microbe | 2011

Peptides Released by Physiological Cleavage of Semen Coagulum Proteins Form Amyloids that Enhance HIV Infection

Nadia R. Roan; Janis A. Müller; Haichuan Liu; Simon Chu; Franziska Arnold; Christina M. Stürzel; Paul Walther; Ming Dong; H. Ewa Witkowska; Frank Kirchhoff; Jan Münch; Warner C. Greene

Semen serves as a vehicle for HIV and promotes sexual transmission of the virus, which accounts for the majority of new HIV cases. The major component of semen is the coagulum, a viscous structure composed predominantly of spermatozoa and semenogelin proteins. Due to the activity of the semen protease PSA, the coagulum is liquefied and semenogelins are cleaved into smaller fragments. Here, we report that a subset of these semenogelin fragments form amyloid fibrils that greatly enhance HIV infection. Like SEVI, another amyloid fibril previously identified in semen, the semenogelin fibrils exhibit a cationic surface and enhance HIV virion attachment and entry. Whereas semen samples from healthy individuals greatly enhance HIV infection, semenogelin-deficient semen samples from patients with ejaculatory duct obstruction are completely deficient in enhancing activity. Semen thus harbors distinct amyloidogenic peptides derived from different precursor proteins that commonly enhance HIV infection and likely contribute to HIV transmission.


Nature Nanotechnology | 2013

Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses

Maral Yolamanova; Christoph Meier; Alexey K. Shaytan; Virag Vas; Carlos W. Bertoncini; Franziska Arnold; Onofrio Zirafi; Shariq M. Usmani; Janis A. Müller; Daniel Sauter; Christine Goffinet; David Palesch; Paul Walther; Nadia R. Roan; Hartmut Geiger; Oleg Lunov; Thomas Simmet; Jens Bohne; Hubert Schrezenmeier; Klaus Schwarz; Ludger Ständker; Wolf-Georg Forssmann; Xavier Salvatella; Pavel G. Khalatur; Alexei R. Khokhlov; Tuomas P. J. Knowles; Tanja Weil; Frank Kirchhoff; Jan Münch

Inefficient gene transfer and low virion concentrations are common limitations of retroviral transduction. We and others have previously shown that peptides derived from human semen form amyloid fibrils that boost retroviral gene delivery by promoting virion attachment to the target cells. However, application of these natural fibril-forming peptides is limited by moderate efficiencies, the high costs of peptide synthesis, and variability in fibril size and formation kinetics. Here, we report the development of nanofibrils that self-assemble in aqueous solution from a 12-residue peptide, termed enhancing factor C (EF-C). These artificial nanofibrils enhance retroviral gene transfer substantially more efficiently than semen-derived fibrils or other transduction enhancers. Moreover, EF-C nanofibrils allow the concentration of retroviral vectors by conventional low-speed centrifugation, and are safe and effective, as assessed in an ex vivo gene transfer study. Our results show that EF-C fibrils comprise a highly versatile, convenient and broadly applicable nanomaterial that holds the potential to significantly facilitate retroviral gene transfer in basic research and clinical applications.


Nature Communications | 2014

Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen

Shariq M. Usmani; Onofrio Zirafi; Janis A. Müller; Nathallie Sandi-Monroy; Jay Kant Yadav; Christoph Meier; Tanja Weil; Nadia R. Roan; Warner C. Greene; Paul Walther; K. P. R. Nilsson; Per Hammarström; R. Wetzel; Christopher D. Pilcher; F. Gagsteiger; Marcus Fändrich; Frank Kirchhoff; Jan Münch

Naturally occurring fragments of the abundant semen proteins prostatic acid phosphatase (PAP) and semenogelins form amyloid fibrils in vitro. These fibrils boost HIV infection and may play a key role in the spread of the AIDS pandemic. However, the presence of amyloid fibrils in semen remained to be demonstrated. Here, we use state of the art confocal and electron microscopy techniques for direct imaging of amyloid fibrils in human ejaculates. We detect amyloid aggregates in all semen samples and find that they partially consist of PAP fragments, interact with HIV particles and increase viral infectivity. Our results establish semen as a body fluid that naturally contains amyloid fibrils that are exploited by HIV to promote its sexual transmission.


Journal of Virology | 2016

Interferon Alpha Subtype-Specific Suppression of HIV-1 Infection In Vivo

Kerry J. Lavender; Kathrin Gibbert; Karin E. Peterson; Erik Van Dis; Sandra Francois; Tyson Woods; Ronald J. Messer; Ali Gawanbacht; Janis A. Müller; Jan Münch; Katie Phillips; Brent Race; Michael S. Harper; Kejun Guo; Eric J. Lee; Mirko Trilling; Hartmut Hengel; Jacob Piehler; Jens Verheyen; Cara C. Wilson; Mario L. Santiago; Kim J. Hasenkrug; Ulf Dittmer

ABSTRACT Although all 12 subtypes of human interferon alpha (IFN-α) bind the same receptor, recent results have demonstrated that they elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-α2 subtype is currently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective subtype against HIV-1 in vitro. We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the human IFN-α14 subtype has very potent anti-HIV-1 activity whereas IFN-α2 does not. In both postexposure prophylaxis and treatment of acute infections, IFN-α14, but not IFN-α2, significantly suppressed HIV-1 replication and proviral loads. Furthermore, HIV-1-induced immune hyperactivation, which is a prognosticator of disease progression, was reduced by IFN-α14 but not IFN-α2. Whereas ineffective IFN-α2 therapy was associated with CD8+ T cell activation, successful IFN-α14 therapy was associated with increased intrinsic and innate immunity, including significantly higher induction of tetherin and MX2, increased APOBEC3G signature mutations in HIV-1 proviral DNA, and higher frequencies of TRAIL+ NK cells. These results identify IFN-α14 as a potent new therapeutic that operates via mechanisms distinct from those of antiretroviral drugs. The ability of IFN-α14 to reduce both viremia and proviral loads in vivo suggests that it has strong potential as a component of a cure strategy for HIV-1 infections. The broad implication of these results is that the antiviral efficacy of each individual IFN-α subtype should be evaluated against the specific virus being treated. IMPORTANCE The naturally occurring antiviral protein IFN-α2 is used to treat hepatitis viruses but has proven rather ineffective against HIV in comparison to triple therapy with the antiretroviral (ARV) drugs. Although ARVs suppress the replication of HIV, they fail to completely clear infections. Since IFN-α acts by different mechanism than ARVs and has been shown to reduce HIV proviral loads, clinical trials are under way to test whether IFN-α2 combined with ARVs might eradicate HIV-1 infections. IFN-α is actually a family of 12 distinct proteins, and each IFN-α subtype has different efficacies toward different viruses. Here, we use mice that contain a human immune system, so they can be infected with HIV. With this model, we demonstrate that while IFN-α2 is only weakly effective against HIV, IFN-α14 is extremely potent. This discovery identifies IFN-α14 as a more powerful IFN-α subtype for use in combination therapy trials aimed toward an HIV cure.


Science Translational Medicine | 2014

Semen enhances HIV infectivity and impairs the antiviral efficacy of microbicides

Onofrio Zirafi; Kyeong-Ae Kim; Nadia R. Roan; Silvia F. Kluge; Janis A. Müller; Shibo Jiang; Benjamin Mayer; Warner C. Greene; Frank Kirchhoff; Jan Münch

Endogenous amyloids in semen impair the antiretroviral efficacy of drugs targeting HIV directly, but do not impair maraviroc, which targets the cellular CCR5 receptor. Undermining Antiretroviral Drug Activity HIV microbicides potently inhibit the virus in vitro but have failed in clinical trials. Semen is a vector for mediating HIV transmission, and the amyloid fibrils in semen have been shown to boost HIV infectivity. Zirafi et al. now show that semen impairs the antiviral efficacy of microbicides that target HIV components. Only the microbicide maraviroc, which binds to the host CCR5 co-receptor for HIV entry, retains full antiviral activity in the presence of semen. These results help to explain why current microbicides have fallen short in performance when tested in clinical trials. These findings further suggest that future in vitro testing of microbicides should be performed in the presence of semen to better predict the antiretroviral efficacy in vivo. Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. We report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was maraviroc. This HIV entry inhibitor targets the host cell CCR5 co-receptor and was highly active against both untreated and semen-exposed HIV. These data help to explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission.


Journal of Virology | 2014

Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection

Nadia R. Roan; Haichuan Liu; Shariq M. Usmani; Jason Neidleman; Janis A. Müller; A. Avila-Herrera; Ali Gawanbacht; Onofrio Zirafi; Simon Chu; M. Dong; S. T. Kumar; James F. Smith; Katherine S. Pollard; Marcus Fändrich; Frank Kirchhoff; Jan Münch; H. E. Witkowska; Warner C. Greene

ABSTRACT Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semens HIV-enhancing activity. IMPORTANCE Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen naturally undergoes physiological changes over time, whereby it converts from a gel-like consistency to a more liquid form. This process, termed liquefaction, is characterized at the molecular level by site-specific and progressive cleavage of SEMs, the major components of the coagulum, by seminal proteases. We demonstrate that the HIV-enhancing activity of semen gradually decreases over the course of extended liquefaction and identify a naturally occurring semenogelin-derived fragment, SEM1(86-107), whose levels correlate with virus-enhancing activity over the course of liquefaction. SEM1(86-107) amyloids are naturally present in semen, and synthetic SEM1(86-107) fibrils bind virions and are sufficient to enhance HIV infection. Therefore, by characterizing dynamic changes in the HIV-enhancing activity of semen during extended liquefaction, we identified SEM1(86-107) to be a key virus-enhancing component of human semen.


Emerging Infectious Diseases | 2016

Inactivation and Environmental Stability of Zika Virus.

Janis A. Müller; Mirja Harms; Axel Schubert; Stephanie Jansen; Detlef Michel; Thomas Mertens; Jonas Schmidt-Chanasit; Jan Münch

To the Editor: Zika virus is an emerging virus that has spread to most countries in Latin America and the Caribbean (1,2). It is transmitted by mosquitoes and through sexual intercourse (3). Most persons infected with Zika virus are asymptomatic or experience mild symptoms (4). However, in a pregnant woman, infection may cause severe pregnancy and birth complications, most notably microcephaly in children infected in utero (5–7). Zika virus infection might also be associated with an increased incidence of Guillain-Barre syndrome (8). Thus, the virus represents a threat to healthcare workers who manage infected patients or diagnostic samples and researchers who work with infectious virus in laboratories.


PLOS Pathogens | 2017

Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells

Jason Neidleman; Joseph C. Chen; Nargis Kohgadai; Janis A. Müller; Anders Laustsen; Karthiga Thavachelvam; Karen S. Jang; Christina M. Stürzel; Jennifer J. Jones; Christina Ochsenbauer; Avantika S. Chitre; Ma Somsouk; Maurice Garcia; James F. Smith; Ruth M. Greenblatt; Jan Münch; Martin R. Jakobsen; Linda C. Giudice; Warner C. Greene; Nadia R. Roan

Understanding early events of HIV transmission within mucosal tissues is vital for developing effective prevention strategies. Here, we report that primary stromal fibroblasts isolated from endometrium, cervix, foreskin, male urethra, and intestines significantly increase HIV infection of CD4+ T cells–by up to 37-fold for R5-tropic HIV and 100-fold for X4-tropic HIV–without themselves becoming infected. Fibroblasts were more efficient than dendritic cells at trans-infection and mediate this response in the absence of the DC-SIGN and Siglec-1 receptors. In comparison, mucosal epithelial cells secrete antivirals and inhibit HIV infection. These data suggest that breaches in the epithelium allow external or luminal HIV to escape an antiviral environment to access the infection-favorable environment of the stromal fibroblasts, and suggest that resident fibroblasts have a central, but previously unrecognized, role in HIV acquisition at mucosal sites. Inhibiting fibroblast-mediated enhancement of HIV infection should be considered as a novel prevention strategy.


Medical Microbiology and Immunology | 2017

Development of a high-throughput colorimetric Zika virus infection assay

Janis A. Müller; Mirja Harms; Axel Schubert; Benjamin Mayer; Stephanie Jansen; Jean-Philippe Herbeuval; Detlef Michel; Thomas Mertens; Olli Vapalahti; Jonas Schmidt-Chanasit; Jan Münch

Zika virus (ZIKV) is an emerging pathogen that causes congenital infections which may result in birth defects, such as microcephaly. Currently, no approved treatment or vaccination is available. ZIKV can be readily detected in cell culture where virally infected cells are normally stained by specific antibodies. As ZIKV regularly causes a cytopathic effect, we were wondering whether this viral property can be used to quantitatively determine viral infectivity. We here describe the use of an 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide-(MTT)-based cell viability assay that allows to determine ZIKV-induced cell death. We show that this colorimetric assay quantifies ZIKV infection over a broad range of viral dilutions in both monkey and human cells. It allows to determine inhibitory activities of antivirals that block ZIKV or to define the neutralizing antibody titers of ZIKV antisera. This MTT-based ZIKV detection assay can be evaluated by naked eye or computational tools, has a broad linear range, does not require large equipment or costly reagents, and thus represents a promising alternative to antibody-based assays, in particular in resource-poor settings. We propose to use this simple, fast, and cheap method for quantification of ZIKV neutralizing antibodies and testing of antiviral compounds.


Advanced Healthcare Materials | 2017

Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses

Franziska Schandock; Camilla Frich Riber; Annika Röcker; Janis A. Müller; Mirja Harms; Paulina Gajda; Kaja Zuwala; Anna H. F. Andersen; Kaja Borup Løvschall; Martin Tolstrup; Florian Kreppel; Jan Münch; Alexander N. Zelikin

Abstract Viral pathogens continue to constitute a heavy burden on healthcare and socioeconomic systems. Efforts to create antiviral drugs repeatedly lag behind the advent of pathogens and growing understanding is that broad‐spectrum antiviral agents will make strongest impact in future antiviral efforts. This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure–activity relationships for these pathogens in terms of their susceptibility to inhibition by polymers, and for polymers in terms of their anionic charge and hydrophobicity that make up broad‐spectrum antiviral agents. The identified leads cannot be predicted based on prior data on polymer‐based antivirals and represent promising candidates for further development as preventive microbicides.

Collaboration


Dive into the Janis A. Müller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadia R. Roan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonas Schmidt-Chanasit

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge