Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janis Liebetanz is active.

Publication


Featured researches published by Janis Liebetanz.


Cancer Cell | 2004

In vivo antitumor activity of NVP-AEW541—A novel, potent, and selective inhibitor of the IGF-IR kinase

Carlos Garcia-Echeverria; Mark Pearson; Andreas Marti; Thomas Meyer; Juergen Mestan; Johann Zimmermann; Jiaping Gao; Josef Brueggen; Hans-Georg Capraro; Robert Cozens; Dean B. Evans; Doriano Fabbro; Pascal Furet; Diana Graus Porta; Janis Liebetanz; Georg Martiny-Baron; Stephan Ruetz; Francesco Hofmann

IGF-IR-mediated signaling promotes survival, anchorage-independent growth, and oncogenic transformation, as well as tumor growth and metastasis formation in vivo. NVP-AEW541 is a pyrrolo[2,3-d]pyrimidine derivative small molecular weight kinase inhibitor of the IGF-IR, capable of distinguishing between the IGF-IR (IC50 = 0.086 microM) and the closely related InsR (IC50 = 2.3 microM) in cells. As expected for a specific IGF-IR kinase inhibitor, NVP-AEW541 abrogates IGF-I-mediated survival and colony formation in soft agar at concentrations that are consistent with inhibition of IGF-IR autophosphorylation. In vivo, this orally bioavailable compound inhibits IGF-IR signaling in tumor xenografts and significantly reduces the growth of IGF-IR-driven fibrosarcomas. Thus, NVP-AEW541 represents a class of selective, small molecule IGF-IR kinase inhibitors with proven in vivo antitumor activity and potential therapeutic application.


Pharmacology & Therapeutics | 2002

Protein kinases as targets for anticancer agents: from inhibitors to useful drugs

Doriano Fabbro; Stephan Ruetz; Elisabeth Buchdunger; Sandra W. Cowan-Jacob; Gabriele Fendrich; Janis Liebetanz; Terence O'Reilly; Peter Traxler; Bhabatosh Chaudhuri; Heinz Fretz; Jürg Zimmermann; Thomas Meyer; Giorgio Caravatti; Pascal Furet; Paul W. Manley

Many components of mitogenic signaling pathways in normal and neoplastic cells have been identified, including the large family of protein kinases, which function as components of signal transduction pathways, playing a central role in diverse biological processes, such as control of cell growth, metabolism, differentiation, and apoptosis. The development of selective protein kinase inhibitors that can block or modulate diseases caused by abnormalities in these signaling pathways is widely considered a promising approach for drug development. Because of their deregulation in human cancers, protein kinases, such as Bcr-Abl, those in the epidermal growth factor-receptor (HER) family, the cell cycle regulating kinases such as the cyclin-dependent kinases, as well as the vascular endothelial growth factor-receptor kinases involved in the neo-vascularization of tumors, are among the protein kinases considered as prime targets for the development of selective inhibitors. These drug-discovery efforts have generated inhibitors and low-molecular weight therapeutics directed against the ATP-binding site of various protein kinases that are in various stages of development (up to Phase II/III clinical trials). Three examples of inhibitors of protein kinases are reviewed, including low-molecular weight compounds targeting the cell cycle kinases; a potent and selective inhibitor of the HER1/HER2 receptor tyrosine kinase, the pyrollopyrimidine PKI166; and the 2-phenyl-aminopyrimidine STI571 (Glivec(R), Gleevec) a targeted drug therapy directed toward Bcr-Abl, the key player in chronic leukemia (CML). Some members of the HER family of receptor tyrosine kinases, in particular HER1 and HER2, have been found to be overexpressed in a variety of human tumors, suggesting that inhibition of HER signaling would be a viable antiproliferative strategy. The pyrrolo-pyrimidine PKI166 was developed as an HER1/HER2 inhibitor with potent in vitro antiproliferative and in vivo antitumor activity. Based upon its clear association with disease, the Bcr-Abl tyrosine kinase in CML represents the ideal target to validate the clinical utility of protein kinase inhibitors as therapeutic agents. In a preclinical model, STI571 (Glivec(R), Gleevec) showed potent in vitro and in vivo antitumor activity that was selective for Abl, c-Kit, and the platelet-derived growth factor-receptor. Phase I/II studies demonstrated that STI571 is well tolerated, and that it showed promising hematological and cytogenetic responses in CML and clinical responses in the c-Kit-driven gastrointestinal tumors.


Acta Crystallographica Section D-biological Crystallography | 2007

Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia.

Sandra W. Cowan-Jacob; Gabriele Fendrich; Andreas Floersheimer; Pascal Furet; Janis Liebetanz; Gabriele Rummel; Paul Rheinberger; Mario Centeleghe; Doriano Fabbro; Paul W. Manley

A case study showing how the determination of multiple cocrystal structures of the protein tyrosine kinase c-Abl was used to support drug discovery, resulting in a compound effective in the treatment of chronic myelogenous leukaemia.


Mini-reviews in Medicinal Chemistry | 2004

Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment.

Sandra W. Cowan-Jacob; Valerie Guez; Gabriele Fendrich; James D. Griffin; Doriano Fabbro; Pascal Furet; Janis Liebetanz; Paul W. Manley

Following the paradigm set by STI571, protein tyrosine kinase inhibitors are emerging as a promising class of drugs, capable of modulating intracellular signaling and demonstrating therapeutic potential for the treatment of proliferative diseases. Although the majority of chronic phase CML patients treated with STI571 respond, some patients, especially those with more advanced disease, relapse. This article reviews the reasons for relapse and, in particular, analyses resistance resulting from Bcr-Abl tyrosine kinase domain mutations at the molecular level. Arguments are based upon the structure of the STI571-Abl complex, which is compared to the crystal structures of PD173955-Abl and PD180970-Abl, which bind to the kinase differently. Strategies to potentially circumvent or overcome resistance are discussed.


Biochimica et Biophysica Acta | 2010

Extended kinase profile and properties of the protein kinase inhibitor nilotinib

Paul W. Manley; Peter Drueckes; Gabriele Fendrich; Pascal Furet; Janis Liebetanz; Georg Martiny-Baron; Jörg Trappe; Markus Wartmann; Doriano Fabbro

As a drug used to treat imatinib-resistant and -intolerant, chronic and advanced phase chronic myelogenous leukaemia, nilotinib is well characterised as a potent inhibitor of the Abl tyrosine kinase activity of wild-type and imatinib-resistant mutant forms of BCR-Abl. Here we review the profile of nilotinib as a protein kinase inhibitor. Although an ATP-competitive inhibitor of Abl, nilotinib binds to a catalytically inactive conformation (DFG-out) of the activation loop. As a consequence of this, nilotinib exhibits time-dependent inhibition of Abl kinase in enzymatic assays, which can be extrapolated to other targets to explain differences between biochemical activity and cellular assays. Although these differences confound assessment of kinase selectivity, as assessed using a combination of protein binding and transphosphorylation assays, together with cellular autophosporylation and proliferation assays, well established kinase targets of nilotinib in rank order of inhibitory potency are DDR-1>DDR-2>BCR-Abl (Abl)>PDGFRalpha/beta>KIT>CSF-1R. In addition nilotinib has now been found to bind to both MAPK11 (p38beta) and MAPK12 (p38alpha), as well as with very high affinity to ZAK kinase. Although neither enzymatic nor cellular data are yet available to substantiate the drug as an inhibitor of ZAK phosphorylation, modeling predicts that it binds in an ATP-competitive fashion.


Journal of Biomolecular NMR | 2003

Amino–acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies

André Strauss; Francis Bitsch; Brian Cutting; Gabriele Fendrich; Patrick Graff; Janis Liebetanz; Mauro Zurini; Wolfgang Jahnke

Culture conditions for successful amino–acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells are described. The method was applied to the selective labeling of the catalytic domain of c-Abl kinase with 15N-phenylalanine, 15N-glycine, 15N-tyrosine or 15N-valine. For the essential amino acids phenylalanine, tyrosine and valine high 15N-label incorporation rates of ≥90% and approximately the expected number of resonances in the HSQC spectra were observed, which was not the case for the non-essential amino acid glycine. The method should be applicable to amino-acid-type selective isotope labeling of other recombinant proteins which have not been amenable to NMR analysis.


Biochimica et Biophysica Acta | 2010

Inhibitors of the Abl kinase directed at either the ATP- or myristate-binding site.

Doriano Fabbro; Paul W. Manley; Wolfgang Jahnke; Janis Liebetanz; Alexandra Szyttenholm; Gabriele Fendrich; André Strauss; Jianming Zhang; Nathanael S. Gray; Francisco Adrian; Markus Warmuth; Xavier Francois Andre Pelle; Robert Martin Grotzfeld; Frederic Berst; Andreas Marzinzik; Sandra W. Cowan-Jacob; Pascal Furet

The ATP-competitive inhibitors dasatinib and nilotinib, which bind to catalytically different conformations of the Abl kinase domain, have recently been approved for the treatment of imatinib-resistant CML. These two new drugs, albeit very efficient against most of the imatinib-resistant mutants of Bcr-Abl, fail to effectively suppress the Bcr-Abl activity of the T315I (or gatekeeper) mutation. Generating new ATP site-binding drugs that target the T315I in Abl has been hampered, amongst others, by target selectivity, which is frequently an issue when developing ATP-competitive inhibitors. Recently, using an unbiased cellular screening approach, GNF-2, a non-ATP-competitive inhibitor, has been identified that demonstrates cellular activity against Bcr-Abl transformed cells. The exquisite selectivity of GNF-2 is due to the finding that it targets the myristate binding site located near the C-terminus of the Abl kinase domain, as demonstrated by genetic approaches, solution NMR and X-ray crystallography. GNF-2, like myristate, is able to induce and/or stabilize the clamped inactive conformation of Abl analogous to the SH2-Y527 interaction of Src. The molecular mechanism for allosteric inhibition by the GNF-2 inhibitor class, and the combined effects with ATP-competitive inhibitors such as nilotinib and imatinib on wild-type Abl and imatinib-resistant mutants, in particular the T315I gatekeeper mutant, are reviewed.


Structure | 2005

The Crystal Structure of a c-Src Complex in an Active Conformation Suggests Possible Steps in c-Src Activation

Sandra W. Cowan-Jacob; Gabriele Fendrich; Paul W. Manley; Wolfgang Jahnke; Doriano Fabbro; Janis Liebetanz; Thomas Meyer


Journal of Biological Chemistry | 1995

Src Phosphorylation of the Epidermal Growth Factor Receptor at Novel Sites Mediates Receptor Interaction with Src and P85α

David Stover; Michael Becker; Janis Liebetanz; Nicholas B. Lydon


Journal of Biological Chemistry | 1994

Cdc2-mediated modulation of pp60c-src activity.

David Stover; Janis Liebetanz; Nicholas B. Lydon

Collaboration


Dive into the Janis Liebetanz's collaboration.

Researchain Logo
Decentralizing Knowledge