Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janis Racevskis is active.

Publication


Featured researches published by Janis Racevskis.


The New England Journal of Medicine | 2012

Prognostic relevance of integrated genetic profiling in acute myeloid leukemia

Jay Patel; Mithat Gonen; Maria E. Figueroa; Hugo F. Fernandez; Zhuoxin Sun; Janis Racevskis; Pieter Van Vlierberghe; Igor Dolgalev; Sabrena Thomas; Olga Aminova; Kety Huberman; Janice Cheng; Agnes Viale; Nicholas D. Socci; Adriana Heguy; Athena M. Cherry; Gail H. Vance; Rodney R. Higgins; Rhett P. Ketterling; Robert E. Gallagher; Mark R. Litzow; Marcel R.M. van den Brink; Hillard M. Lazarus; Jacob M. Rowe; Selina M. Luger; Adolfo A. Ferrando; Elisabeth Paietta; Martin S. Tallman; Ari Melnick; Omar Abdel-Wahab

BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease with respect to presentation and clinical outcome. The prognostic value of recently identified somatic mutations has not been systematically evaluated in a phase 3 trial of treatment for AML. METHODS We performed a mutational analysis of 18 genes in 398 patients younger than 60 years of age who had AML and who were randomly assigned to receive induction therapy with high-dose or standard-dose daunorubicin. We validated our prognostic findings in an independent set of 104 patients. RESULTS We identified at least one somatic alteration in 97.3% of the patients. We found that internal tandem duplication in FLT3 (FLT3-ITD), partial tandem duplication in MLL (MLL-PTD), and mutations in ASXL1 and PHF6 were associated with reduced overall survival (P=0.001 for FLT3-ITD, P=0.009 for MLL-PTD, P=0.05 for ASXL1, and P=0.006 for PHF6); CEBPA and IDH2 mutations were associated with improved overall survival (P=0.05 for CEBPA and P=0.01 for IDH2). The favorable effect of NPM1 mutations was restricted to patients with co-occurring NPM1 and IDH1 or IDH2 mutations. We identified genetic predictors of outcome that improved risk stratification among patients with AML, independently of age, white-cell count, induction dose, and post-remission therapy, and validated the significance of these predictors in an independent cohort. High-dose daunorubicin, as compared with standard-dose daunorubicin, improved the rate of survival among patients with DNMT3A or NPM1 mutations or MLL translocations (P=0.001) but not among patients with wild-type DNMT3A, NPM1, and MLL (P=0.67). CONCLUSIONS We found that DNMT3A and NPM1 mutations and MLL translocations predicted an improved outcome with high-dose induction chemotherapy in patients with AML. These findings suggest that mutational profiling could potentially be used for risk stratification and to inform prognostic and therapeutic decisions regarding patients with AML. (Funded by the National Cancer Institute and others.).


The New England Journal of Medicine | 2009

Anthracycline dose intensification in acute myeloid leukemia

Hugo F. Fernandez; Zhuoxin Sun; Xiaopan Yao; Mark R. Litzow; Selina M. Luger; Elisabeth Paietta; Janis Racevskis; Gordon W. Dewald; Rhett P. Ketterling; John M. Bennett; Jacob M. Rowe; Hillard M. Lazarus; Martin S. Tallman

BACKGROUND In young adults with acute myeloid leukemia (AML), intensification of the anthracycline dose during induction therapy has improved the rate of complete remission but not of overall survival. We evaluated the use of cytarabine plus either standard-dose or high-dose daunorubicin as induction therapy, followed by intensive consolidation therapy, in inducing complete remission to improve overall survival. METHODS In this phase 3 randomized trial, we assigned 657 patients between the ages of 17 and 60 years who had untreated AML to receive three once-daily doses of daunorubicin at either the standard dose (45 mg per square meter of body-surface area) or a high dose (90 mg per square meter), combined with seven daily doses of cytarabine (100 mg per square meter) by continuous intravenous infusion. Patients who had a complete remission were offered either allogeneic hematopoietic stem-cell transplantation or high-dose cytarabine, with or without a single dose of the monoclonal antibody gemtuzumab ozogamicin, followed by autologous stem-cell transplantation. The primary end point was overall survival. RESULTS In the intention-to-treat analysis, high-dose daunorubicin, as compared with a standard dose of the drug, resulted in a higher rate of complete remission (70.6% vs. 57.3%, P<0.001) and improved overall survival (median, 23.7 vs. 15.7 months; P=0.003). The rates of serious adverse events were similar in the two groups. Median follow-up was 25.2 months. CONCLUSIONS In young adults with AML, intensifying induction therapy with a high daily dose of daunorubicin improved the rate of complete remission and the duration of overall survival, as compared with the standard dose. (ClinicalTrials.gov number, NCT00049517.)


Nature Medicine | 2012

Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia

Panagiotis Ntziachristos; Aristotelis Tsirigos; Pieter Van Vlierberghe; Jelena Nedjic; Thomas Trimarchi; Maria Sol Flaherty; Dolors Ferres-Marco; Vanina Gabriela Da Ros; Zuojian Tang; Jasmin Siegle; Patrik Asp; Michael Hadler; Isaura Rigo; Kim De Keersmaecker; Jay Patel; Tien Huynh; Filippo Utro; Sandrine Poglio; Jeremy B. Samon; Elisabeth Paietta; Janis Racevskis; Jacob M. Rowe; Raul Rabadan; Ross L. Levine; Stuart M. Brown; Françoise Pflumio; M.I. Domínguez; Adolfo A. Ferrando; Iannis Aifantis

T-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling1. In this study we report the presence of loss-of-function mutations and deletions of EZH2 and SUZ12 genes, encoding critical components of the Polycomb Repressive Complex 2 (PRC2) complex2,3, in 25% of T-ALLs. To further study the role of the PRC2 complex in T-ALL, we used NOTCH1-induced animal models of the disease, as well as human T-ALL samples, and combined locus-specific and global analysis of NOTCH1-driven epigenetic changes. These studies demonstrated that activation of NOTCH1 specifically induces loss of the repressive mark lysine-27 tri-methylation of histone 3 (H3K27me3)4 by antagonizing the activity of the Polycomb Repressive Complex 2 (PRC2) complex. These studies demonstrate a tumor suppressor role for the PRC2 complex in human leukemia and suggest a hitherto unrecognized dynamic interplay between oncogenic NOTCH1 and PRC2 function for the regulation of gene expression and cell transformation.


Nature Medicine | 2013

Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL

Gannie Tzoneva; Arianne Perez-Garcia; Zachary Carpenter; Hossein Khiabanian; Valeria Tosello; Maddalena Allegretta; Elisabeth Paietta; Janis Racevskis; Jacob M. Rowe; Martin S. Tallman; Maddalena Paganin; Giuseppe Basso; Jana Hof; Renate Kirschner-Schwabe; Teresa Palomero; Raul Rabadan; Adolfo A. Ferrando

Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5′-nucleotidase II gene (NT5C2), which encodes a 5′-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.


Cancer Cell | 2013

Direct Reversal of Glucocorticoid Resistance by AKT Inhibition in Acute Lymphoblastic Leukemia

Erich Piovan; Jiyang Yu; Valeria Tosello; Daniel Herranz; Alberto Ambesi-Impiombato; Ana Carolina Da Silva; Marta Sanchez-Martin; Arianne Perez-Garcia; Isaura Rigo; Mireia Castillo; Stefano Indraccolo; Justin R. Cross; Elisa de Stanchina; Elisabeth Paietta; Janis Racevskis; Jacob M. Rowe; Martin S. Tallman; Giuseppe Basso; Jules P.P. Meijerink; Carlos Cordon-Cardo; Adolfo A. Ferrando

Glucocorticoid resistance is a major driver of therapeutic failure in T cell acute lymphoblastic leukemia (T-ALL). Here, we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus. Moreover, we demonstrate that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid-induced apoptosis and induce resistance to glucocorticoid therapy. Conversely, pharmacologic inhibition of AKT with MK2206 effectively restores glucocorticoid-induced NR3C1 translocation to the nucleus, increases the response of T-ALL cells to glucocorticoid therapy, and effectively reverses glucocorticoid resistance in vitro and in vivo.


Journal of Experimental Medicine | 2011

ETV6 mutations in early immature human T cell leukemias

Pieter Van Vlierberghe; Alberto Ambesi-Impiombato; Arianne Perez-Garcia; J. Erika Haydu; Isaura Rigo; Michael Hadler; Valeria Tosello; Giusy Della Gatta; Elisabeth Paietta; Janis Racevskis; Peter H. Wiernik; Selina M. Luger; Jacob M. Rowe; Montserrat Rué; Adolfo A. Ferrando

A substantial proportion of adult T-ALL samples display gene expression and mutation characteristics of both T cell and acute myeloid leukemias; mutations in ETV6 are found exclusively within this new molecular subgroup of adult T-ALL patients.


Nature Medicine | 2010

The TLX1 oncogene drives aneuploidy in T cell transformation

Kim De Keersmaecker; Pedro J. Real; Giusy Della Gatta; Teresa Palomero; Maria Luisa Sulis; Valeria Tosello; Pieter Van Vlierberghe; Kelly A Barnes; Mireia Castillo; Xavier Sole; Michael Hadler; Jack Lenz; Peter D. Aplan; Michelle A. Kelliher; Barbara L. Kee; Pier Paolo Pandolfi; Dietmar J. Kappes; Fotini Gounari; Howard T. Petrie; Joni Van der Meulen; Frank Speleman; Elisabeth Paietta; Janis Racevskis; Peter H. Wiernik; Jacob M. Rowe; Jean Soulier; David Avran; Hélène Cavé; Nicole Dastugue; Susana C. Raimondi

The TLX1 oncogene (encoding the transcription factor T cell leukemia homeobox protein-1) has a major role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). However, the specific mechanisms of T cell transformation downstream of TLX1 remain to be elucidated. Here we show that transgenic expression of human TLX1 in mice induces T-ALL with frequent deletions and mutations in Bcl11b (encoding B cell leukemia/lymphoma-11B) and identify the presence of recurrent mutations and deletions in BCL11B in 16% of human T-ALLs. Most notably, mouse TLX1 tumors were typically aneuploid and showed a marked defect in the activation of the mitotic checkpoint. Mechanistically, TLX1 directly downregulates the expression of CHEK1 (encoding CHK1 checkpoint homolog) and additional mitotic control genes and induces loss of the mitotic checkpoint in nontransformed preleukemic thymocytes. These results identify a previously unrecognized mechanism contributing to chromosomal missegregation and aneuploidy active at the earliest stages of tumor development in the pathogenesis of cancer.


Journal of Clinical Oncology | 2007

Differential Gene Expression Patterns and Interaction Networks in BCR-ABL–Positive and –Negative Adult Acute Lymphoblastic Leukemias

Dejan Juric; Norman J. Lacayo; Meghan Ramsey; Janis Racevskis; Peter H. Wiernik; Jacob M. Rowe; Anthony H. Goldstone; Peter J. O'Dwyer; Elisabeth Paietta; Branimir I. Sikic

PURPOSE To identify gene expression patterns and interaction networks related to BCR-ABL status and clinical outcome in adults with acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS DNA microarrays were used to profile a set of 54 adult ALL specimens from the Medical Research Council UKALL XII/Eastern Cooperative Oncology Group E2993 trial (21 p185BCR-ABL-positive, 16 p210BCR-ABL-positive and 17 BCR-ABL-negative specimens). RESULTS Using supervised and unsupervised analysis tools, we detected significant transcriptomic changes in BCR-ABL-positive versus -negative specimens, and assessed their validity in an independent cohort of 128 adult ALL specimens. This set of 271 differentially expressed genes (including GAB1, CIITA, XBP1, CD83, SERPINB9, PTP4A3, NOV, LOX, CTNND1, BAALC, and RAB21) is enriched for genes involved in cell death, cellular growth and proliferation, and hematologic system development and function. Network analysis demonstrated complex interaction patterns of these genes, and identified FYN and IL15 as the hubs of the top-scoring network. Within the BCR-ABL-positive subgroups, we identified genes overexpressed (PILRB, STS-1, SPRY1) or underexpressed (TSPAN16, ADAMTSL4) in p185BCR-ABL-positive ALL relative to p210BCR-ABL-positive ALL. Finally, we constructed a gene expression- and interaction-based outcome predictor consisting of 27 genes (including GRB2, GAB1, GLI1, IRS1, RUNX2, and SPP1), which correlated with overall survival in BCR-ABL-positive adult ALL (P = .0001), independent of age (P = .25) and WBC count at presentation (P = .003). CONCLUSION We identified prominent molecular features of BCR-ABL-positive adult ALL, which may be useful for developing novel therapeutic targets and prognostic markers in this disease.


Leukemia | 1998

Biologic heterogeneity in Philadelphia chromosome-positive acute leukemia with myeloid morphology: the Eastern Cooperative Oncology Group experience

Elisabeth Paietta; Janis Racevskis; John M. Bennett; Donna Neuberg; Peter A. Cassileth; Jacob M. Rowe; Peter H. Wiernik

Evaluable karyotypes were available in 776 of 1148 adult patients who were entered on acute myeloid leukemia (AML) treatment protocols of the Eastern Cooperative Oncology Group. Among these, we found seven patients (0.9%) with t(9;22)(q34;q11), the Philadelphia (Ph) chromosome, in bone marrow metaphases. All fulfilled the FAB criteria for AML (three M0, two M1, two M2), although one patient presented with an additional, distinct lymphoid blast cell population. Chromosomal aberrations in addition to the Ph chromosome were seen in four patients (including two cases of monosomy 7). Molecular analysis by polymerase chain reaction in four patients tested revealed variable BCR/ABL transcript forms (ela2, b2a2, b3a2, b2a3+e1a2). By immunophenotyping, all seven patients were myeloid based on the overall antigen expression pattern. However, all but one demonstrated lymphoid-associated antigens on the myeloid blast cells. The six evaluable patients failed to respond to treatment with a standard anthracycline/cytosine arabinoside-containing regimen. We conclude that the incidence of the Ph chromosome in AML is very low. Although both genotypically and phenotypically heterogenous, Ph chromosome-positive AML, represents a clinically distinct entity with poor outcome.


Cytometry Part B-clinical Cytometry | 2004

A surrogate marker profile for PML/RARα expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes

Elisabeth Paietta; O. Goloubeva; Donna Neuberg; John M. Bennett; Robert E. Gallagher; Janis Racevskis; Gordon W. Dewald; Peter H. Wiernik; Martin S. Tallman

The availability of genotype‐specific therapy for PML/RARαpos acute promyelocytic leukemia (APL) requires that this disease be precisely diagnosed. Immunophenotypic characteristics heretofore proclaimed as reliably characterizing APL (HLA‐DRlow, CD34low, P‐glycoproteinlow myeloid phenotype) do not differentiate from APL‐like immune profiles unassociated with the PML/RARα fusion transcript.

Collaboration


Dive into the Janis Racevskis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob M. Rowe

Shaare Zedek Medical Center

View shared research outputs
Top Co-Authors

Avatar

Martin S. Tallman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Peter H. Wiernik

National Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Selina M. Luger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Hillard M. Lazarus

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge