Janne Haapanen
Tampere University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janne Haapanen.
ACS Applied Materials & Interfaces | 2014
Joel Songok; Mikko Tuominen; Hannu Teisala; Janne Haapanen; Jyrki M. Mäkelä; Jurkka Kuusipalo; Martti Toivakka
Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. In this study we report a two-step fabrication process for creating two-dimensional microfluidic channels to move liquids on a hydrophobized paper surface. A highly hydrophobic surface was created on paper by TiO2 nanoparticle coating using a high-speed, roll-to-roll liquid flame spray technique. The hydrophilic pattern was then generated by UV irradiation through a photomask utilizing the photocatalytic property of TiO2. The flow dynamics of five model liquids with differing surface tensions 48-72 mN·m(-1) and viscosities 1-15 mN·m(-2) was studied. The results show that the liquid front (l) in a channel advances in time (t) according to the power law l=Zt0.5 (Z is an empirical constant which depend on the liquid properties and channel dimensions). The flow dynamics of the liquids with low viscosity show a dependence on the channel width and the droplet volume, while the flow of liquids with high viscosity is mainly controlled by the viscous forces.
Langmuir | 2013
Milena Stepien; Jarkko J. Saarinen; Hannu Teisala; Mikko Tuominen; Mikko Aromaa; Janne Haapanen; Jurkka Kuusipalo; Jyrki M. Mäkelä; Martti Toivakka
The chemical composition of a TiO2 nanoparticle coated paper surface was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study the interconnection between wettability and surface chemistry on the nanoscale. In this work, a superhydrophobic TiO2 surface rich in carboxyl-terminated molecules was created by a liquid flame spray process. The TiO2 nanoparticle coated paper surface can be converted by photocatalytic oxidation into a highly hydrophilic one. Interestingly, the hydrophilic surface can be converted back into a superhydrophobic surface by heat treatment. The results showed that both ultraviolet A (UVA) and oven treatment induce changes in the surface chemistry within a few nanometers of the paper surface. These findings are consistent with those from our previously reported X-ray photoelectron spectroscopy (XPS) analysis, but the ToF-SIMS analysis yields more accurate insight into the surface chemistry.
Cellulose | 2013
Hannu Teisala; Mikko Tuominen; Milena Stepien; Janne Haapanen; Jyrki M. Mäkelä; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Titanium dioxide (TiO2) is a photoactive material with various interesting and useful properties. One of those is the perfect wettability of TiO2 surface after ultraviolet (UV) illumination. Wettability of a solid surface plays an important role in the field of printing, coating, and adhesion among others. Here we report on a superhydrophobic and photoactive liquid flame spray (LFS) generated TiO2 nanoparticle coating that can be applied on web-like materials such as paper and board in one-step roll-to-roll process. The LFS TiO2 nanoparticle coated paper and board were superhydrophobic instantly after the coating procedure because of spontaneously accumulated carbonaceous overlayer on TiO2, and thus there was no need for any type of separate hydrophobization treatment. The highly photoactive LFS TiO2 nanoparticle coating could be converted steplessly from superhydrophobic to superhydrophilic by UV-illumination, and the coating gave strong response to natural daylight illumination even in the shade. The superhydrophobic LFS TiO2 coated surface can be used as an intelligent substrate, where photo-generated hydrophilic patterns guide the fluid setting and figure formation. Our study reveals that the wettability changes on the LFS TiO2 surface were primarily caused by the photocatalytic removal of the carbonaceous material from TiO2 during the UV-illumination and spontaneous accumulation of the carbonaceous material on the surface of the metal oxide during storage in the dark. The latter mechanism was found to be a temperature activated process which could be significantly speeded up by heat treatment. If other mechanisms such as surface oxidization, increment of hydroxyl groups, or charge separation played a role in the wetting phenomena on TiO2, their effect was rather secondary as the removal and accumulation of the carbonaceous material dominated the wettability changes on the surface. Our study gives valuable information on the complex issue of photo-induced wettability changes on TiO2.
Holzforschung | 2016
Maziar Sedighi Moghaddam; Golrokh Heydari; Mikko Tuominen; Matthew Fielden; Janne Haapanen; Jyrki M. Mäkelä; Magnus Wålinder; Per M. Claesson; Agne Swerin
Abstract The hydrophilic nature of wood surfaces is a major cause for water uptake and subsequent biological degradation and dimensional changes. In the present paper, a thin transparent superhydrophobic layer on pine veneer surfaces has been created for controlling surface wettability and water repellency. This effect was achieved by means of the liquid flame spray (LFS) technique, in the course of which the nanoparticulate titanium dioxide (TiO2) was brought to the surface, followed by plasma polymerisation. Plasma polymerised perfluorohexane (PFH) or hexamethyldisiloxane (HMDSO) were then deposited onto the LFS-treated wood surfaces. The same treatment systems were applied to silicon wafers so as to have well-defined reference surfaces. The dynamic wettability was studied by the multicycle Wilhelmy plate (mWP) method, resulting in advancing and receding contact angles as well as sorption behavior of the samples during repeated wetting cycles in water. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were employed to characterise the topography and surface chemical compositions and to elucidate the question how the morphology of the nanoparticles and plasma affect the wetting behavior. A multi-scale roughness (micro-nano roughness) was found and this enhanced the forced wetting durability via a superhydrophobic effect on the surface, which was stable even after repeated wetting cycles. The hydrophobic effect of this approach was higher compared to that of plasma modified surfaces with their micro-scale modification.
Journal of Colloid and Interface Science | 2016
Golrokh Heydari; Maziar Sedighi Moghaddam; Mikko Tuominen; Matthew Fielden; Janne Haapanen; Jyrki M. Mäkelä; Per M. Claesson
The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost formation to occur.
Nanoscale Research Letters | 2013
Milena Stepien; Jarkko J. Saarinen; Hannu Teisala; Mikko Tuominen; Janne Haapanen; Jyrki M. Mäkelä; Jurkka Kuusipalo; Martti Toivakka
Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure.PACS61.46.-w; 68.08.Bc; 81.07.-b
Advanced Materials | 2018
Hannu Teisala; Florian Geyer; Janne Haapanen; Paxton Juuti; Jyrki M. Mäkelä; Doris Vollmer; Hans-Jürgen Butt
Low roll-off angle, high impalement pressure, and mechanical robustness are key requirements for super-liquid-repellent surfaces to realize their potential in applications ranging from gas exchange membranes to protective and self-cleaning materials. Achieving these properties is still a challenge with superamphiphobic surfaces, which can repel both water and low-surface-tension liquids. In addition, fabrication procedures of superamphiphobic surfaces are typically slow and expensive. Here, by making use of liquid flame spray, a silicon dioxide-titanium dioxide nanostructured coating is fabricated at a high velocity up to 0.8 m s-1 . After fluorosilanization, the coating is superamphiphobic with excellent transparency and an extremely low roll-off angle; 10 µL drops of n-hexadecane roll off the surface at inclination angles even below 1°. Falling drops bounce off when impacting from a height of 50 cm, demonstrating the high impalement pressure of the coating. The extraordinary properties are due to a pronounced hierarchical nanotexture of the coating.
Applied Physics Letters | 2017
Paxton Juuti; Janne Haapanen; Christian Stenroos; Henna Niemelä-Anttonen; Juha Harra; Heli Koivuluoto; Hannu Teisala; Johanna Lahti; Mikko Tuominen; Jurkka Kuusipalo; Petri Vuoristo; Jyrki M. Mäkelä
Slippery, liquid-infused porous surfaces offer a promising route for producing omniphobic and anti-icing surfaces. Typically, these surfaces are made as a coating with expensive and time consuming assembly methods or with fluorinated films and oils. We report on a route for producing liquid-infused surfaces, which utilizes a liquid precursor fed oxygen-hydrogen flame to produce titania nanoparticles deposited directly on a low-density polyethylene film. This porous nanocoating, with thickness of several hundreds of nanometers, is then filled with silicone oil. The produced surfaces are shown to exhibit excellent anti-icing properties, with an ice adhesion strength of ∼12 kPa, which is an order of magnitude improvement when compared to the plain polyethylene film. The surface was also capable of maintaining this property even after cyclic icing testing.
Aerosol Science and Technology | 2015
Juha Harra; Paxton Juuti; Janne Haapanen; Miika Sorvali; Eleftheria Roumeli; Mari Honkanen; Minnamari Vippola; Jaakko Yli-Ojanperä; Jyrki M. Mäkelä
Silica and titania aerosol nanoparticles are coated with silver through a physical coating process. The silver is evaporated in a tubular furnace flow system and condensed on the ceramic carrier particles with diameters of approximately 100 nm. The temperature gradient in the furnace system is optimized in order to avoid homogeneous nucleation of the silver. The generated ceramic–silver composite nanoparticles are characterized with aerosol measurements and analytical transmission electron microscopy. Two completely different particle morphologies are clearly observed, silver-decoration and composite doublet, with amorphous silica and crystalline rutile titania as the carrier particles, respectively. The former morphology consists of multiple silver nanodots with diameters of 1–10 nm, while in the latter morphology the silver had formed a larger structure with a size comparable to that of the carrier particle. Different shapes are observed in these larger silver structures, such as triangular, rodlike, and hexagonal. Differences in the silver particle migration on the surface of the silica and titania particles is proposed to be the key factor resulting into the two distinct particle morphologies. Copyright 2015 American Association for Aerosol Research
Cellulose | 2014
Hannu Teisala; Mikko Tuominen; Janne Haapanen; Mikko Aromaa; Milena Stepien; Jyrki M. Mäkelä; Jarkko J. Saarinen; Martti Toivakka; Jurkka Kuusipalo
Surface wetting/anti-wetting and liquid absorption are relevant properties of many porous solids including paper and other cellulose-based materials. Here we demonstrate how surface wetting by water and water absorption of commercially available kraft paper can be altered by thin nanoparticle coatings fabricated by liquid flame spray in facile and continuous one-step process. Surface wettability and absorption properties of paper increased with silica and decreased with titania (TiO2) nanoparticle coatings. Moreover, the water-repellent (superhydrophobic) TiO2 nanoparticle coated paper could be switched to superhydrophilic and water absorbing by ultraviolet illumination. The experiments revealed that although surface wetting and liquid absorption of nanoparticle coated paper are strongly related to each other, they are two distinct phenomena which do not necessarily correlate. We propose wetting regimes on the nanoparticle coated paper samples on the basis of the experimental observations.