Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janne Nikkilä is active.

Publication


Featured researches published by Janne Nikkilä.


PLOS ONE | 2010

Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians

Elena Biagi; Lotta Nylund; Marco Candela; Rita Ostan; Laura Bucci; Elisa Pini; Janne Nikkilä; Daniela Monti; Reetta Satokari; Claudio Franceschi; Patrizia Brigidi; Willem M. de Vos

Background Age-related physiological changes in the gastrointestinal tract, as well as modifications in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbiota, resulting in a greater susceptibility to infections. Methodology/Principal Findings By using the Human Intestinal Tract Chip (HITChip) and quantitative PCR of 16S rRNA genes of Bacteria and Archaea, we explored the age-related differences in the gut microbiota composition among young adults, elderly, and centenarians, i.e subjects who reached the extreme limits of the human lifespan, living for over 100 years. We observed that the microbial composition and diversity of the gut ecosystem of young adults and seventy-years old people is highly similar but differs significantly from that of the centenarians. After 100 years of symbiotic association with the human host, the microbiota is characterized by a rearrangement in the Firmicutes population and an enrichment in facultative anaerobes, notably pathobionts. The presence of such a compromised microbiota in the centenarians is associated with an increased inflammatory status, also known as inflammageing, as determined by a range of peripheral blood inflammatory markers. This may be explained by a remodelling of the centenarians microbiota, with a marked decrease in Faecalibacterium prauznitzii and relatives, symbiotic species with reported anti-inflammatory properties. As signature bacteria of the long life we identified specifically Eubacterium limosum and relatives that were more than ten-fold increased in the centenarians. Conclusions/Significance We provide evidence for the fact that the ageing process deeply affects the structure of the human gut microbiota, as well as its homeostasis with the hosts immune system. Because of its crucial role in the host physiology and health status, age-related differences in the gut microbiota composition may be related to the progression of diseases and frailty in the elderly population.


PLOS ONE | 2009

Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine

Marcus J. Claesson; Orla O'Sullivan; Qiong Wang; Janne Nikkilä; Julian Roberto Marchesi; Hauke Smidt; Willem M. de Vos; R. Paul Ross; Paul W. O'Toole

Background Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate classifications based on two variable 16S rRNA gene regions. Methods and Findings Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual samples, was 1,400–1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human Intestinal Tract (HIT) Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings. Conclusions The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genus-level with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower sampling-depth. HITChip hybridizations and resulting community profiles correlate well with pyrosequencing-based compositions, especially for lower-order ranks, indicating high robustness of both approaches. However, incompatible grouping schemes make exact comparison difficult.


Journal of Microbiological Methods | 2010

Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: Effective recovery of bacterial and archaeal DNA using mechanical cell lysis

Anne Salonen; Janne Nikkilä; Jonna Jalanka-Tuovinen; Outi Immonen; Mirjana Rajilić-Stojanović; Riina A. Kekkonen; Airi Palva; Willem M. de Vos

Several different protocols are used for fecal DNA extraction, which is an integral step in all phylogenetic and metagenomic approaches to characterize the highly diverse intestinal ecosystem. We compared four widely used methods, and found their DNA yields to vary up to 35-fold. Bacterial, archaeal and human DNA was quantified by real-time PCR, and a compositional analysis of different extracts was carried out using the Human Intestinal Tract Chip, a 16S rRNA gene-based phylogenetic microarray. The overall microbiota composition was highly similar between the methods in contrast to the profound differences between the subjects (Pearson correlations >0.899 and 0.735, respectively). A detailed comparative analysis of mechanical and enzymatic methods showed that despite their overall similarity, the mechanical cell disruption by repeated bead beating showed the highest bacterial diversity and resulted in significantly improved DNA extraction efficiency of archaea and some bacteria, including Clostridium cluster IV. By applying the mechanical disruption method a high prevalence (67%) of methanogenic archaea was detected in healthy subjects (n=24), exceeding the typical values reported previously. The assessment of performance differences between different methodologies serves as a concrete step towards the comparison and reliable meta-analysis of the results obtained in different laboratories.


Nature Biotechnology | 2010

A global map of human gene expression

Margus Lukk; Misha Kapushesky; Janne Nikkilä; Helen Parkinson; Angela Goncalves; Wolfgang Huber; Esko Ukkonen; Alvis Brazma

To the Editor Although there is only one human genome sequence, different genes are expressed in many different cell types and tissues, as well as in different developmental stages or diseases. The structure of this ‘expression space’ is still largely unknown, as most transcriptomics experiments focus on sampling small regions. We have constructed a global gene expression map by integrating microarray data from 5,372 human samples representing 369 different cell and tissue types, disease states and cell lines. These have been compiled in an online resource (http://www.ebi.ac.uk/gxa/array/U133A) that allows the user to search for a gene of interest and find the conditions in which it is over- or underexpressed, or, conversely, to find which genes are over- or underexpressed in a particular condition. An analysis of the structure of the expression space reveals that it can be described by a small number of distinct expression profile classes and that the first three principal components of this space have biological interpretations. The hematopoietic system, solid tissues and incompletely differentiated cell types are arranged on the first principal axis; cell lines, neoplastic samples and nonneoplastic primary tissue–derived samples are on the second principal axis; and nervous system is separated from the rest of the samples on the third axis. We also show below that most cell lines cluster together rather than with their tissues of origin.


PLOS ONE | 2011

Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms

Jonna Jalanka-Tuovinen; Anne Salonen; Janne Nikkilä; Outi Immonen; Riina A. Kekkonen; Leo Lahti; Airi Palva; Willem M. de Vos

Background While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. Principal Findings A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. Conclusions/Significance A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut.


PLOS ONE | 2012

Comparative Metaproteomics and Diversity Analysis of Human Intestinal Microbiota Testifies for Its Temporal Stability and Expression of Core Functions

Carolin Kolmeder; Mark de Been; Janne Nikkilä; Ilja Ritamo; Jaana Mättö; Leena Valmu; Jarkko Salojärvi; Airi Palva; Anne Salonen; Willem M. de Vos

The human intestinal tract is colonized by microbial communities that show a subject-specific composition and a high-level temporal stability in healthy adults. To determine whether this is reflected at the functional level, we compared the faecal metaproteomes of healthy subjects over time using a novel high-throughput approach based on denaturing polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry. The developed robust metaproteomics workflow and identification pipeline was used to study the composition and temporal stability of the intestinal metaproteome using faecal samples collected from 3 healthy subjects over a period of six to twelve months. The same samples were also subjected to DNA extraction and analysed for their microbial composition and diversity using the Human Intestinal Tract Chip, a validated phylogenetic microarray. Using metagenome and single genome sequence data out of the thousands of mass spectra generated per sample, approximately 1,000 peptides per sample were identified. Our results indicate that the faecal metaproteome is subject-specific and stable during a one-year period. A stable common core of approximately 1,000 proteins could be recognized in each of the subjects, indicating a common functional core that is mainly involved in carbohydrate transport and degradation. Additionally, a variety of surface proteins could be identified, including potential microbes-host interacting components such as flagellins and pili. Altogether, we observed a highly comparable subject-specific clustering of the metaproteomic and phylogenetic profiles, indicating that the distinct microbial activity is reflected by the individual composition.


BMC Microbiology | 2013

Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease

Lotta Nylund; Reetta Satokari; Janne Nikkilä; Mirjana Rajilić-Stojanović; Marko Kalliomäki; Erika Isolauri; Seppo Salminen; Willem M. de Vos

BackgroundDeviations in composition and diversity of intestinal microbiota in infancy have been associated with both the development and recurrence of atopic eczema. Thus, we decided to use a deep and global microarray-based method to characterize the diversity and temporal changes of the intestinal microbiota in infancy and to define specific bacterial signatures associated with eczema. Faecal microbiota at 6 and 18 months of age were analysed from 34 infants (15 with eczema and 19 healthy controls) selected from a prospective follow-up study based on the availability of faecal samples. The infants were originally randomized to receive either Lactobacillus rhamnosus GG or placebo.ResultsChildren with eczema harboured a more diverse total microbiota than control subjects as assessed by the Simpson’s reciprocal diversity index of the microarray profiles. Composition of the microbiota did not differ between study groups at age of 6 months, but was significantly different at age of 18 months as assessed by MCPP (p=0.01). At this age healthy children harboured 3 -fold greater amount of members of the Bacteroidetes (p=0.01). Microbiota of children suffering from eczema had increased abundance of the Clostridium clusters IV and XIVa, which are typically abundant in adults. Probiotic Lactobacillus rhamnosus GG supplementation in early infancy was observed to have minor long-term effects on the microbiota composition.ConclusionA diverse and adult-type microbiota in early childhood is associated with eczema and it may contribute to the perpetuation of eczema.


BMC Gastroenterology | 2010

Effect of a multispecies probiotic supplement on quantity of irritable bowel syndrome-related intestinal microbial phylotypes.

Anna Lyra; Lotta Krogius-Kurikka; Janne Nikkilä; Erja Malinen; Kajsa Kajander; Kyosti Kurikka; Riitta Korpela; Airi Palva

BackgroundProbiotics can alleviate the symptoms of irritable bowel syndrome (IBS), possibly by stabilizing the intestinal microbiota. Our aim was to determine whether IBS-associated bacterial alterations were reduced during multispecies probiotic intervention consisting of Lactobacillus rhamnosus GG, L. rhamnosus Lc705, Propionibacterium freudenreichii ssp. shermanii JS and Bifidobacterium breve Bb99. The intervention has previously been shown to successfully alleviate gastrointestinal symptoms of IBS.MethodsThe faecal microbiotas of 42 IBS subjects participating in a placebo-controlled double-blind multispecies probiotic intervention were analysed using quantitative real-time polymerase chain reaction (qPCR). Eight bacterial targets within the gastrointestinal microbiota with a putative IBS association were measured.ResultsA phylotype with 94% similarity to Ruminococcus torques remained abundant in the placebo group, but was decreased in the probiotic group during the intervention (P = 0.02 at 6 months). In addition, the clostridial phylotype, Clostridium thermosuccinogenes 85%, was stably elevated during the intervention (P = 0.00 and P = 0.02 at 3 and 6 months, respectively). The bacterial alterations detected were in accordance with previously discovered alleviation of symptoms.ConclusionsThe probiotic supplement was thus shown to exert specific alterations in the IBS-associated microbiota towards the bacterial 16S rDNA phylotype quantities described previously for subjects free of IBS. These changes may have value as non-invasive biomarkers in probiotic intervention studies.


World Journal of Gastroenterology | 2009

Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification

Anna Lyra; Teemu Rinttilä; Janne Nikkilä; Lotta Krogius-Kurikka; Kajsa Kajander; Erja Malinen; Jaana Mättö; Laura Mäkelä; Airi Palva


World Journal of Gastroenterology | 2010

Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome

Erja Malinen; Lotta Krogius-Kurikka; Anna Lyra; Janne Nikkilä; Anne Jaaskelainen; Teemu Rinttilä; Terttu Vilpponen-Salmela; Airi Palva

Collaboration


Dive into the Janne Nikkilä's collaboration.

Top Co-Authors

Avatar

Willem M. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Airi Palva

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Anna Lyra

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge