Janne V. Kujala
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janne V. Kujala.
Scandinavian Journal of Psychology | 2009
Heikki Lyytinen; Jane Erskine; Janne V. Kujala; Emma Ojanen; Ulla Richardson
This is a story about the fate of a psychological application: from its conception to the optimistic vision surrounding its future. We hope that this application - an enjoyable learning game (www or mobile phone-based, available free of charge to the end users) for children - can at best help millions of children in their reading acquisition in the future. Its basis was created by following intensively the development of children with (N = 107) and without (N = 92) genetic (familial) risk for dyslexia from birth to puberty in the Jyväskylä Longitudinal study of Dyslexia (JLD)-project. We summarize some of the major findings of the JLD in order to facilitate understanding of the reasons and logic behind the development of the game. Originally intended as a research tool for reading acquisition, its potential for prevention of reading difficulties was quickly recognized.
Neural Computation | 2010
Daniel R. Cavagnaro; Jay I. Myung; Mark A. Pitt; Janne V. Kujala
Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.
Topics in Cognitive Science | 2014
Ehtibar N. Dzhafarov; Janne V. Kujala
The Bell/CHSH inequalities of quantum physics are identical with the inequalities derived in mathematical psychology for the problem of selective influences in cases involving two binary experimental factors and two binary random variables recorded in response to them. The following points are made regarding cognitive science applications: (1) compliance of data with these inequalities is informative only if the data satisfy the requirement known as marginal selectivity; (2) both violations of marginal selectivity and violations of the Bell/CHSH inequalities are interpretable as indicating that at least one of the two responses is influenced by both experimental factors.
PLOS ONE | 2013
Ehtibar N. Dzhafarov; Janne V. Kujala
From behavioral sciences to biology to quantum mechanics, one encounters situations where (i) a system outputs several random variables in response to several inputs, (ii) for each of these responses only some of the inputs may “directly” influence them, but (iii) other inputs provide a “context” for this response by influencing its probabilistic relations to other responses. These contextual influences are very different, say, in classical kinetic theory and in the entanglement paradigm of quantum mechanics, which are traditionally interpreted as representing different forms of physical determinism. One can mathematically construct systems with other types of contextuality, whether or not empirically realizable: those that form special cases of the classical type, those that fall between the classical and quantum ones, and those that violate the quantum type. We show how one can quantify and classify all logically possible contextual influences by studying various sets of probabilistic couplings, i.e., sets of joint distributions imposed on random outputs recorded at different (mutually incompatible) values of inputs.
Physical Review Letters | 2015
Janne V. Kujala; Ehtibar N. Dzhafarov; Jan-Åke Larsson
The notion of (non)contextuality pertains to sets of properties measured one subset (context) at a time. We extend this notion to include so-called inconsistently connected systems, in which the measurements of a given property in different contexts may have different distributions, due to contextual biases in experimental design or physical interactions (signaling): a system of measurements has a maximally noncontextual description if they can be imposed a joint distribution on in which the measurements of any one property in different contexts are equal to each other with the maximal probability allowed by their different distributions. We derive necessary and sufficient conditions for the existence of such a description in a broad class of systems including Klyachko-Can-Binicioğlu-Shumvosky-type (KCBS), EPR-Bell-type, and Leggett-Garg-type systems. Because these conditions allow for inconsistent connectedness, they are applicable to real experiments. We illustrate this by analyzing an experiment by Lapkiewicz and colleagues aimed at testing contextuality in a KCBS-type system.
Foundations of Physics | 2015
Ehtibar N. Dzhafarov; Janne V. Kujala; Jan-Åke Larsson
We present a formal theory of contextuality for a set of random variables grouped into different subsets (contexts) corresponding to different, mutually incompatible conditions. Within each context the random variables are jointly distributed, but across different contexts they are stochastically unrelated. The theory of contextuality is based on the analysis of the extent to which some of these random variables can be viewed as preserving their identity across different contexts when one considers all possible joint distributions imposed on the entire set of the random variables. We illustrate the theory on three systems of traditional interest in quantum physics (and also in non-physical, e.g., behavioral studies). These are systems of the Klyachko–Can–Binicioglu–Shumovsky-type, Einstein–Podolsky–Rosen–Bell-type, and Suppes–Zanotti–Leggett–Garg-type. Listed in this order, each of them is formally a special case of the previous one. For each of them we derive necessary and sufficient conditions for contextuality while allowing for experimental errors and contextual biases or signaling. Based on the same principles that underly these derivations we also propose a measure for the degree of contextuality and compute it for the three systems in question.
arXiv: Quantum Physics | 2015
Ehtibar N. Dzhafarov; Janne V. Kujala; Víctor H. Cervantes
This paper is a brief overview of the concepts involved in measuring the degree of contextuality and detecting contextuality in systems of binary measurements of a finite number of objects. We discuss and clarify the main concepts and terminology of the theory called “contextuality-by-default,” and then discuss generalizations of the theory to arbitrary systems of arbitrary random variables.
Philosophical Transactions of the Royal Society A | 2015
Ehtibar N. Dzhafarov; Ru Zhang; Janne V. Kujala
Most behavioural and social experiments aimed at revealing contextuality are confined to cyclic systems with binary outcomes. In quantum physics, this broad class of systems includes as special cases Klyachko–Can–Binicioglu–Shumovsky-type, Einstein–Podolsky–Rosen–Bell-type and Suppes–Zanotti–Leggett–Garg-type systems. The theory of contextuality known as contextuality-by-default allows one to define and measure contextuality in all such systems, even if there are context-dependent errors in measurements, or if something in the contexts directly interacts with the measurements. This makes the theory especially suitable for behavioural and social systems, where direct interactions of ‘everything with everything’ are ubiquitous. For cyclic systems with binary outcomes, the theory provides necessary and sufficient conditions for non-contextuality, and these conditions are known to be breached in certain quantum systems. We review several behavioural and social datasets (from polls of public opinion to visual illusions to conjoint choices to word combinations to psychophysical matching), and none of these data provides any evidence for contextuality. Our working hypothesis is that this may be a broadly applicable rule: behavioural and social systems are non-contextual, i.e. all ‘contextual effects’ in them result from the ubiquitous dependence of response distributions on the elements of contexts other than the ones to which the response is presumably or normatively directed.
PLOS ONE | 2014
Ehtibar N. Dzhafarov; Janne V. Kujala
We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings) into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is “automatically” labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon). Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints). In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions.
Frontiers in Psychology | 2010
Ehtibar N. Dzhafarov; Janne V. Kujala
A general definition and a criterion (a necessary and sufficient condition) are formulated for an arbitrary set of external factors to selectively influence a corresponding set of random entities (generalized random variables, with values in arbitrary observation spaces), jointly distributed at every treatment (a set of factor values containing precisely one value of each factor). The random entities are selectively influenced by the corresponding factors if and only if the following condition, called the joint distribution criterion, is satisfied: there is a jointly distributed set of random entities, one entity for every value of every factor, such that every subset of this set that corresponds to a treatment is distributed as the original variables at this treatment. The distance tests (necessary conditions) for selective influence previously formulated for two random variables in a two-by-two factorial design (Kujala and Dzhafarov, 2008, J. Math. Psychol. 52, 128–144) are extended to arbitrary sets of factors and random variables. The generalization turns out to be the simplest possible one: the distance tests should be applied to all two-by-two designs extractable from a given set of factors.