Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janneau van Kranenburg is active.

Publication


Featured researches published by Janneau van Kranenburg.


Experimental Gerontology | 2013

The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size

Rachel Nilwik; Tim Snijders; Marika Leenders; Bart B. L. Groen; Janneau van Kranenburg; Lex B. Verdijk; Luc J. C. van Loon

BACKGROUND The loss of skeletal muscle mass with aging has been attributed to a decline in muscle fiber number and muscle fiber size. OBJECTIVE To define to what extent differences in leg muscle cross-sectional area (CSA) between young and elderly men are attributed to differences in muscle fiber size. METHODS Quadriceps muscle CSA and type I and type II muscle fiber size were measured in healthy young (n=25; 23 ± 1 y) and older (n=26; 71 ± 1 y) men. Subsequently, the older subjects performed 6 months of resistance type exercise training, after which measurements were repeated. Differences in quadriceps muscle CSA were compared with differences in type I and type II muscle fiber size. RESULTS Quadriceps CSA was substantially smaller in older versus young men (68 ± 2 vs 80 ± 2 cm(2), respectively; P<0.001). Type II muscle fiber size was substantially smaller in the elderly vs the young (29%; P<0.001), with a tendency of smaller type I muscle fibers (P=0.052). Differences in type II muscle fiber size fully explained differences in quadriceps CSA between groups. Prolonged resistance type exercise training in the elderly increased type II muscle fiber size by 24 ± 8% (P<0.01), explaining 100 ± 3% of the increase in quadriceps muscle CSA (from 68 ± 2 to 74 ± 2 cm(2)). CONCLUSION Reduced muscle mass with aging is mainly attributed to smaller type II muscle fiber size and, as such, is unlikely accompanied by substantial muscle fiber loss. In line, the increase in muscle mass following prolonged resistance type exercise training can be attributed entirely to specific type II muscle fiber hypertrophy.


Journal of the American Medical Directors Association | 2013

Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging.

Marika Leenders; Lex B. Verdijk; Letty van der Hoeven; Jos J. Adam; Janneau van Kranenburg; Rachel Nilwik; Luc J. C. van Loon

BACKGROUND The loss of muscle mass with aging reduces muscle strength, impairs functional capacity, and increases the risk of developing chronic metabolic disease. It has been suggested that the development of type 2 diabetes results in a more rapid decline in muscle mass, strength, and functional capacity. OBJECTIVE To investigate the impact of type 2 diabetes on muscle mass, strength, and functional capacity in an older population. METHODS Muscle mass (DXA and muscle biopsies), strength (1-repetition maximum), functional capacity (sit-to-stand test and handgrip strength), and reaction time performance (computer task) were compared between 60 older men with type 2 diabetes (71 ± 1 years) and 32 age-matched normoglycemic controls (70 ± 1 years). Data were analyzed using ANCOVA to adjust for several potential confounders. RESULTS Leg lean mass and appendicular skeletal muscle mass were significantly lower in older men with type 2 diabetes (19.1 ± 0.3 and 25.9 ± 0.4 kg, respectively) compared with normoglycemic controls (19.7 ± 0.3 and 26.7 ± 0.5 kg, respectively). Additionally, leg extension strength was significantly lower in the group with type 2 diabetes (84 ± 2 vs 91 ± 2 kg, respectively). In agreement, functional performance was impaired in the men with type 2 diabetes, with longer sit-to-stand time (9.1 ± 0.4 vs 7.8 ± 0.3 seconds) and lower handgrip strength (39.5 ± 5.8 vs 44.6 ± 6.1 kg) when compared with normoglycemic controls. However, muscle fiber size and reaction time performance did not differ between groups. CONCLUSION Older patients with type 2 diabetes show an accelerated decline in leg lean mass, muscle strength, and functional capacity when compared with normoglycemic controls. Exercise intervention programs should be individualized to specifically target muscle mass, strength, and functional capacity in the older population with type 2 diabetes.


Journal of Nutrition | 2011

Prolonged Leucine Supplementation Does Not Augment Muscle Mass or Affect Glycemic Control in Elderly Type 2 Diabetic Men

Marika Leenders; Lex B. Verdijk; Letty van der Hoeven; Janneau van Kranenburg; F. Hartgens; Will K. W. H. Wodzig; Wim H. M. Saris; Luc J. C. van Loon

The loss of muscle mass with aging has been, at least partly, attributed to a blunted muscle protein synthetic response to food intake. Leucine coingestion has been reported to stimulate postprandial insulin release and augment postprandial muscle protein accretion. We assessed the clinical benefits of 6 mo of leucine supplementation in elderly, type 2 diabetes patients. Sixty elderly males with type 2 diabetes (age, 71 ± 1 y; BMI, 27.3 ± 0.4 kg/m(2)) were administered 2.5 g L-leucine (n = 30) or a placebo (n = 30) with each main meal during 6 mo of nutritional intervention (7.5 g/d leucine or placebo). Body composition, muscle fiber characteristics, muscle strength, glucose homeostasis, and basal plasma amino acid and lipid concentrations were assessed prior to, during, and after intervention. Lean tissue mass did not change or differ between groups and at 0, 3, and 6 mo were 61.9 ± 1.1, 62.2 ± 1.1, and 62.0 ± 1.0 kg, respectively, in the leucine group and 62.2 ± 1.3, 62.2 ± 1.3, and 62.2 ± 1.3 kg in the placebo group. There also were no changes in body fat percentage, muscle strength, and muscle fiber type characteristics. Blood glycosylated hemoglobin did not change or differ between groups and was 7.1 ± 0.1% in the leucine group and 7.2 ± 0.2% in the placebo group. Consistent with this, oral glucose insulin sensitivity and plasma lipid concentrations did not change or differ between groups. We conclude that prolonged leucine supplementation (7.5 g/d) does not modulate body composition, muscle mass, strength, glycemic control, and/or lipidemia in elderly, type 2 diabetes patients who habitually consume adequate dietary protein.


Medicine and Science in Sports and Exercise | 2013

Protein Supplementation during Resistance-Type Exercise Training in the Elderly.

Marika Leenders; Lex B. Verdijk; Letty van der Hoeven; Janneau van Kranenburg; Rachel Nilwik; Will K. W. H. Wodzig; Joan M. G. Senden; H. A. Keizer; Luc J. C. van Loon

INTRODUCTION Resistance training has been well established as an effective treatment strategy to increase skeletal muscle mass and strength in the elderly. We assessed whether dietary protein supplementation can further augment the adaptive response to prolonged resistance-type exercise training in healthy elderly men and women. METHODS Healthy elderly men (n = 31, 70 ± 1 yr) and women (n = 29, 70 ± 1 yr) were randomly assigned to a progressive, 24-wk resistance-type exercise training program with or without additional protein supplementation (15 g·d-1). Muscle hypertrophy was assessed on a whole-body Dual-energy X-ray absorptiometry (DXA), limb (computed tomography), and muscle fiber (biopsy) level. Strength was assessed regularly by 1-repetition maximum (RM) strength testing. Functional capacity was assessed with a sit-to-stand and handgrip test. RESULTS One-RM strength increased by 45% ± 6% versus 40% ± 3% (women) and 41% ± 4% versus 44% ± 3% (men) in the placebo versus protein group, respectively (P < 0.001), with no differences between groups. Leg muscle mass (women, 4% ± 1% vs 3% ± 1%; men, 3% ± 1% vs 3% ± 1%) and quadriceps cross-sectional area (women, 9% ± 1% vs 9% ± 1%; men, 9% ± 1% vs 10% ± 1%) increased similarly in the placebo versus protein groups (P < 0.001). Type II muscle fiber size increased over time in both placebo and protein groups (25% ± 13% vs 30% ± 9% and 23% ± 12% vs 22% ± 10% in the women and men, respectively). Sit-to-stand improved by 18% ± 2% and 19% ± 2% in women and men, respectively (P < 0.001). CONCLUSION Prolonged resistance-type exercise training increases skeletal muscle mass and strength, augments functional capacity, improves glycemia and lipidemia, and reduces blood pressure in healthy elderly men and women. Additional protein supplementation (15 g·d-1) does not further increase muscle mass, strength, and/or functional capacity.


Journal of Applied Physiology | 2014

Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes

Bart B. L. Groen; Henrike M. Hamer; Tim Snijders; Janneau van Kranenburg; Dionne Frijns; Hans Vink; Luc J. C. van Loon

Adequate muscle perfusion is required for the maintenance of skeletal muscle mass. Impairments in microvascular structure and/or function with aging and type 2 diabetes have been associated with the progressive loss of skeletal muscle mass. Our objective was to compare muscle fiber type specific capillary density and endothelial function between healthy young men, healthy older men, and age-matched type 2 diabetes patients. Fifteen healthy young men (24 ± 1 yr), 15 healthy older men (70 ± 2 yr), and 15 age-matched type 2 diabetes patients (70 ± 1 yr) were selected to participate in the present study. Whole body insulin sensitivity, muscle fiber type specific capillary density, sublingual microvascular density, and dimension of the erythrocyte-perfused boundary region were assessed to evaluate the impact of aging and/or type 2 diabetes on microvascular structure and function. Whole body insulin sensitivity was significantly lower at a more advanced age, with lowest values reported in the type 2 diabetic patients. In line, skeletal muscle capillary contacts were much lower in the older and older type 2 diabetic patients when compared with the young. Sidestream darkfield imaging showed a significantly greater thickness of the erythrocyte perfused boundary region in the type 2 diabetic patients compared with the young. Skeletal muscle capillary density is reduced with aging and type 2 diabetes and accompanied by impairments in endothelial glycocalyx function, which is indicative of compromised vascular function.


Journal of Nutrition | 2015

Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young Men

Tim Snijders; Peter T. Res; Joey S.J. Smeets; Stephan van Vliet; Janneau van Kranenburg; Kamiel Maase; Arie K. Kies; Lex B. Verdijk; Luc J. C. van Loon

BACKGROUND It has been demonstrated that protein ingestion before sleep increases muscle protein synthesis rates during overnight recovery from an exercise bout. However, it remains to be established whether dietary protein ingestion before sleep can effectively augment the muscle adaptive response to resistance-type exercise training. OBJECTIVE Here we assessed the impact of dietary protein supplementation before sleep on muscle mass and strength gains during resistance-type exercise training. METHODS Forty-four young men (22 ± 1 y) were randomly assigned to a progressive, 12-wk resistance exercise training program. One group consumed a protein supplement containing 27.5 g of protein, 15 g of carbohydrate, and 0.1 g of fat every night before sleep. The other group received a noncaloric placebo. Muscle hypertrophy was assessed on a whole-body (dual-energy X-ray absorptiometry), limb (computed tomography scan), and muscle fiber (muscle biopsy specimen) level before and after exercise training. Strength was assessed regularly by 1-repetition maximum strength testing. RESULTS Muscle strength increased after resistance exercise training to a significantly greater extent in the protein-supplemented (PRO) group than in the placebo-supplemented (PLA) group (+164 ± 11 kg and +130 ± 9 kg, respectively; P < 0.001). In addition, quadriceps muscle cross-sectional area increased in both groups over time (P < 0.001), with a greater increase in the PRO group than in the PLA group (+8.4 ± 1.1 cm(2) vs. +4.8 ± 0.8 cm(2), respectively; P < 0.05). Both type I and type II muscle fiber size increased after exercise training (P < 0.001), with a greater increase in type II muscle fiber size in the PRO group (+2319 ± 368 μm(2)) than in the PLA group (+1017 ± 353 μm(2); P < 0.05). CONCLUSION Protein ingestion before sleep represents an effective dietary strategy to augment muscle mass and strength gains during resistance exercise training in young men. This trial was registered at clinicaltrials.gov as NCT02222415.


PLOS ONE | 2015

Post-Prandial Protein Handling: You Are What You Just Ate

Bart B. L. Groen; Astrid M. H. Horstman; Henrike M. Hamer; Michiel W. de Haan; Janneau van Kranenburg; Jörgen Bierau; Martijn Poeze; Will K. W. H. Wodzig; Blake B. Rasmussen; Luc J. C. van Loon

Background Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults. Objective To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein. Design 12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment. Results 55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 μM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE). Conclusion Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis. Trial Registration trialregister.nl 3638


Journal of Nutrition | 2014

Acute Dietary Protein Intake Restriction Is Associated with Changes in Myostatin Expression after a Single Bout of Resistance Exercise in Healthy Young Men

Tim Snijders; Lex B. Verdijk; Bryon R. McKay; Joey S.J. Smeets; Janneau van Kranenburg; Bart B.B. Groen; Gianni Parise; Paul L. Greenhaff; Luc J. C. van Loon

Skeletal muscle satellite cells (SCs) play an important role in the myogenic adaptive response to exercise. It remains to be established whether nutrition plays a role in SC activation in response to exercise. In the present study, we assessed whether dietary protein alters the SC response to a single bout of resistance exercise. Twenty healthy young (aged 21 ± 2 y) males were randomly assigned to consume a 4-d controlled diet that provided either 1.2 g protein ⋅ kg body weight(-1) ⋅ d(-1) [normal protein diet (NPD)] or 0.1 g protein ⋅ kg body weight(-1) ⋅ d(-1) [low protein diet (LPD)]. On the second day of the controlled diet, participants performed a single bout of resistance exercise. Muscle biopsies from the vastus lateralis were collected before and after 12, 24, 48, and 72 h of post-exercise recovery. SC content and activation status were determined using immunohistochemistry. Protein and mRNA expression were determined using Western blotting and reverse transcription polymerase chain reaction. The number of myostatin + SCs decreased significantly at 12, 24, and 48 h (range, -14 to -49%; P < 0.05) after exercise cessation, with no differences between groups. Although the number of myostatin + SCs returned to baseline in the type II fibers on the NPD after 72 h of recovery, the number remained low on the LPD. At the 48 and 72 h time points, myostatin protein expression was elevated (86 ± 26% and 88 ± 29%, respectively) on the NPD (P < 0.05), whereas it was reduced at 72 h (-36 ± 12% compared with baseline) in the LPD group (P < 0.05). This study demonstrates that dietary protein intake does not modulate the post-exercise increase in SC content but modifies myostatin expression in skeletal muscle tissue. This trial was registered at clinicaltrials.gov as NCT01220037.


The Journal of Clinical Endocrinology and Metabolism | 2015

Impact of the Macronutrient Composition of a Nutritional Supplement on Muscle Protein Synthesis Rates in Older Men: A Randomized, Double Blind, Controlled Trial

Irene Fleur Kramer; Lex B. Verdijk; Henrike M. Hamer; S. Verlaan; Yvette C. Luiking; Imre W. K. Kouw; Joan M. G. Senden; Janneau van Kranenburg; Annemarie P. Gijsen; Martijn Poeze; Luc J. C. van Loon

CONTEXT An impaired muscle protein synthetic response to feeding likely contributes to muscle loss with aging. There are few data available on the effect of the macronutrient composition of clinical supplements on the postprandial muscle protein synthetic response in older subjects. OBJECTIVE The objective of the study was to determine the impact of the macronutrient composition of a nutritional supplement on the postprandial muscle protein synthetic response in older men. METHODS A total of 45 nonsarcopenic older men (aged 69 ± 1 y; body mass index 25.7 ± 0.3 kg/m(2)) were randomly assigned to ingest 21 g of leucine-enriched whey protein with carbohydrate (9 g) and fat (3 g) (Pro-En), an isonitrogenous amount of 21 g of leucine-enriched whey protein without carbohydrate and fat (Pro), or an isocaloric mixture (628 kJ) containing carbohydrate and fat only (En). Stable isotope tracer methodology was applied to assess the basal as well as the postprandial muscle protein synthesis rates in the three groups. RESULTS Ingestion of protein in the Pro-En and Pro groups significantly increased muscle protein synthesis rates when compared with the basal rates (from 0.032 ± 0.003%/h to 0.05%/h 3 ± 0.004%/h and 0.040%/h ± 0.003%/h to 0.049%/h ± 0.003%/h, respectively; P < .05), whereas ingestion of carbohydrate and fat did not increase muscle protein synthesis rates in the En group (from 0.039%/h ± 0.004%/h to 0.040%/h ± 0.003%/h; P = .60). Despite the greater postprandial rise in circulating insulin concentration in the Pro-En group, no significant differences were observed in postprandial muscle protein synthesis rates between the Pro-En and Pro groups (P = .32). Postprandial muscle protein synthesis rates were higher in the Pro-En vs En group (P = .01). CONCLUSION The ingestion of a nutritional supplement containing 21 g of leucine-enriched whey protein significantly raises muscle protein synthesis rates in nonsarcopenic older men, but coingestion of carbohydrate and fat does not modulate the postprandial muscle protein synthetic response to protein ingestion in older men.


Medicine and Science in Sports and Exercise | 2016

Resistance Training Increases Skeletal Muscle Capillarization in Healthy Older Men

Lex B. Verdijk; Tim Snijders; Tanya M. Holloway; Janneau van Kranenburg; Luc J. C. van Loon

PURPOSE Skeletal muscle capillarization plays a key role in oxygen and nutrient delivery to muscle. The loss of muscle mass with aging and the concept of anabolic resistance have been, at least partly, attributed to changes in skeletal muscle capillary structure and function. We aimed to compare skeletal muscle capillarization between young and older men and evaluate whether resistance-type exercise training increases muscle capillarization in older men. METHODS Muscle biopsies were obtained from the vastus lateralis of healthy young (n = 14, 26 ± 2 yr) and older (n = 16, 72 ± 1 yr) adult men, with biopsies before and after 12 wk of resistance-type exercise training in the older subjects. Immunohistochemistry was used to assess skeletal muscle fiber size, capillary contacts (CC) per muscle fiber, and the capillary-to-fiber perimeter exchange (CFPE) index in type I and II muscle fibers. RESULTS Type II muscle fibers were smaller in old versus young (4507 ± 268 vs 6084 ± 497 μm, respectively, P = 0.007). Type I and type II muscle fiber CC and CFPE index were smaller in old compared with young muscle (CC type I: 3.8 ± 0.2 vs 5.0 ± 0.3; CC type II: 3.2 ± 0.2 vs 4.2 ± 0.2, respectively; both P < 0.001). Resistance-type exercise training increased type II muscle fiber size only. In addition, CC and CFPE index increased in both the type I (26% ± 9% and 27% ± 8%) and type II muscle fibers (33% ± 7% and 24% ± 6%, respectively; all P ≤ 0.001) after 12 wk resistance training in older men. CONCLUSIONS We conclude that resistance-type exercise training can effectively augment skeletal muscle fiber capillarization in older men. The greater capillary supply may be an important prerequisite to reverse anabolic resistance and support muscle hypertrophy during lifestyle interventions aiming to support healthy aging.

Collaboration


Dive into the Janneau van Kranenburg's collaboration.

Top Co-Authors

Avatar

Luc J. C. van Loon

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Lex B. Verdijk

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart B. L. Groen

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Henrike M. Hamer

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Fleur Kramer

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Marika Leenders

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Imre W. K. Kouw

Maastricht University Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge