Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jannek Hauser is active.

Publication


Featured researches published by Jannek Hauser.


Proceedings of the National Academy of Sciences of the United States of America | 2008

B-cell receptor activation inhibits AID expression through calmodulin inhibition of E-proteins

Jannek Hauser; Natalia Sveshnikova; Anders Wallenius; Sanna Baradaran; Juha Saarikettu; Thomas Grundström

Upon encountering antigens, B-lymphocytes can adapt to produce a highly specific and potent antibody response. Somatic hypermutation, which introduces point mutations in the variable regions of antibody genes, can increase the affinity for antigen, and antibody effector functions can be altered by class switch recombination (CSR), which changes the expressed constant region exons. Activation-induced cytidine deaminase (AID) is the mutagenic antibody diversification enzyme that is essential for both somatic hypermutation and CSR. The mutagenic AID enzyme has to be tightly controlled. Here, we show that engagement of the membrane-bound antibodies of the B-cell receptor (BCR), which signals that good antibody affinity has been reached, inhibits AID gene expression and that calcium (Ca2+) signaling is essential for this inhibition. Moreover, we show that overexpression of the Ca2+ sensor protein calmodulin inhibits AID gene expression, and that the transcription factor E2A is required for regulation of the AID gene by the BCR. E2A mutated in the binding site for calmodulin, and thus showing calmodulin-resistant DNA binding, makes AID expression resistant to the inhibition through BCR activation. Thus, BCR activation inhibits AID gene expression through Ca2+/calmodulin inhibition of E2A.


Molecular Biology of the Cell | 2008

Calcium Regulation of Myogenesis by Differential Calmodulin Inhibition of Basic Helix-Loop-Helix Transcription Factors

Jannek Hauser; Juha Saarikettu; Thomas Grundström

The members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors are critical regulators of skeletal muscle differentiation that function as heterodimers with ubiquitously expressed E-protein bHLH transcription factors. These heterodimers must compete successfully with homodimers of E12 and other E-proteins to enable myogenesis. Here, we show that E12 mutants resistant to Ca(2+)-loaded calmodulin (CaM) inhibit MyoD-initiated myogenic conversion of transfected fibroblasts. Ca(2+) channel blockers reduce, and Ca(2+) stimulation increases, transcription by coexpressed MyoD and wild-type E12 but not CaM-resistant mutant E12. Furthermore, CaM-resistant E12 gives lower MyoD binding and higher E12 binding to a MyoD-responsive promoter in vivo and cannot rescue myogenic differentiation that has been inhibited by siRNA against E12 and E47. Our data support the concept that Ca(2+)-loaded CaM enables myogenesis by inhibiting DNA binding of E-protein homodimers, thereby promoting occupancy of myogenic bHLH protein/E-protein heterodimers on promoters of myogenic target genes.


Journal of Immunology | 2009

Initiation of Antigen Receptor-Dependent Differentiation into Plasma Cells by Calmodulin Inhibition of E2A

Jannek Hauser; Jiyoti Verma-Gaur; Anders Wallenius; Thomas Grundström

Differentiation of B lymphocytes into Ab-secreting plasmablasts and plasma cells is Ag driven. The interaction of Ag with the membrane-bound Ab of the BCR is critical in determining which clones enter the plasma cell response. However, not much is known about the coupling between BCR activation and the shift in transcription factor network from that of a B cell to that of ASC differentiation. Our genome-wide analysis shows that Ab-secreting cell differentiation of mouse B cells is induced by BCR activation through very fast regulatory events from the BCR. We identify activation of IFN regulatory factor-4 and down-regulation of Pax5, Bcl-6, MITF, Ets-1, Fli-1, and Spi-B gene expression as immediate early events. Furthermore, the transcription factor E2A is required for the rapid key down-regulations after BCR activation, and the Ca2+ sensor protein calmodulin has the corresponding regulatory effect as BCR activation. Moreover, mutants in the calmodulin binding site of E2A show that Ca2+ signaling through calmodulin inhibition of E2A is essential for the rapid down-regulation of immediate early genes after BCR activation in initiation of plasma cell differentiation.


Molecular Immunology | 2010

Calmodulin inhibition of E2A stops expression of surrogate light chains of the pre-B-cell receptor and CD19

Jannek Hauser; Anders Wallenius; Natalia Sveshnikova; Juha Saarikettu; Thomas Grundström

To create antibody diversity, B lymphocyte development is characterized by the ordered rearrangement of first immunoglobulin (Ig) heavy chain gene segments and then Ig light-chain gene segments. Early in B-cell development, expression of a pre-B-cell receptor (pre-BCR) composed of membrane-bound Ig heavy chain protein associated with surrogate light-chain (SLC) proteins serves as a critical checkpoint that monitors for functional heavy chain rearrangement. Signaling from the pre-BCR induces clonal expansion, but it also turns off transcription of the genes for the SLC proteins lambda5 and VpreB, which limits this proliferation. Here we show that signaling from the pre-BCR rapidly down-regulates lambda5 and VpreB and also the co-receptor CD19 in primary pre-B-cells. We show that calcium (Ca(2+)) signaling is essential for this silencing of the SLC and CD19 genes. The SLC genes are activated by the E2A transcription factor, and we show that E2A is required for pre-BCR-mediated regulation of the genes. E2A mutated in its binding site for the Ca(2+) sensor protein calmodulin, and thus with calmodulin-resistant DNA binding, makes lambda5, VpreB and CD19 expression resistant to the inhibition following pre-BCR activation. Thus, Ca(2+) down-regulates SLC and CD19 gene expression upon pre-BCR activation through inhibition of E2A by Ca(2+)/calmodulin.


Journal of Immunology | 2014

Allelic Exclusion of IgH through Inhibition of E2A in a VDJ Recombination Complex

Jannek Hauser; Christine Grundström; Thomas Grundström

A key feature of the immune system is the paradigm that one lymphocyte has only one Ag specificity that can be selected for or against. This requires that only one of the alleles of genes for AgR chains is made functional. However, the molecular mechanism of this allelic exclusion has been an enigma. In this study, we show that B lymphocytes with E2A that cannot be inhibited by calmodulin are dramatically defective in allelic exclusion of the IgH locus. Furthermore, we provide data supporting that E2A, PAX5, and the RAGs are in a VDJ recombination complex bound to key sequences on the Igh gene. We show that pre-BCR activation releases the VDJ recombination complex through calmodulin binding to E2A. We also show that pre-BCR signaling downregulates several components of the recombination machinery, including RAG1, RAG2, and PAX5, through calmodulin inhibition of E2A.


Journal of Immunology | 2012

Negative feedback regulation of antigen receptors through calmodulin inhibition of E2A

Jiyoti Verma-Gaur; Jannek Hauser; Thomas Grundström

Signaling from the BCR is used to judge Ag-binding strengths of the Abs of B cells. BCR signaling enables the selection for successive improvements in the Ag affinity over an extremely broad range of affinities during somatic hypermutation. We show that the mouse BCR is subject to general negative feedback regulation of the receptor proteins, as well as many coreceptors and proteins in signal pathways from the receptor. Thus, the BCR can downregulate itself, which can enable sensitive detection of successive improvements in the Ag affinity over a very large span of affinities. Furthermore, the feedback inhibition of the BCR signalosome and most of its proteins, as well as most other regulations of genes by BCR stimulation, is to a large extent through inhibition of the transcription factor E2A by Ca2+/calmodulin.


Molecular Immunology | 2013

Broad feedback inhibition of pre-B-cell receptor signaling components

Jannek Hauser; Jiyoti Verma-Gaur; Thomas Grundström

During B lymphocyte development, first immunoglobulin heavy chain gene segments and then immunoglobulin light chain gene segments are rearranged to create antibody diversity. Early in the development, expression of a pre-B-cell receptor (pre-BCR) that has membrane-bound Ig heavy chain protein associated with surrogate light chain (SLC) proteins serves as a critical checkpoint that monitors for functional heavy chain rearrangement. Signaling from the pre-BCR induces survival and clonal expansion to select cells with good heavy chains, but it also down-regulates transcription of the genes for the SLC proteins and CD19 and limits its own proliferative signaling. Here we have analyzed whether the down-regulation is limited to the SLC proteins and CD19, and we show that the pre-BCR of primary mouse pre-B-cells instead is subject to a broad feedback inhibition of pre-BCR signaling components. Activation of signaling leads to down-regulation of the receptor proteins, many co-receptors and proteins participating in signal pathways from the receptor. Thus the down-regulation of the pre-BCR is much broader than previously assumed. We also show that Ca(2+)/calmodulin inhibition of the transcription factor E2A is required for the feedback inhibition of the pre-BCR signaling proteins.


Molecular Immunology | 2016

Regulated localization of an AID complex with E2A, PAX5 and IRF4 at the Igh locus

Jannek Hauser; Christine Grundström; Ramesh Kumar; Thomas Grundström

Activation-induced cytidine deaminase (AID) is the key mutagenic enzyme that initiates somatic hypermutation (SH) and class switch recombination (CSR) by deaminating cytosine to uracil. The targeting of AID and therefore SH and CSR to Ig genes is a central process of the immune system, but the trans-acting factors mediating the specific targeting have remained elusive. Here we show that defective calmodulin inhibition of the transcription factor E2A after activation of the B cell receptor (BCR) leads to reduced BCR, IL4 plus CD40 ligand stimulated CSR to IgE and instead CSR to other Ig classes. AID that initiates CSR is shown to be in a complex with the transcription factors E2A, PAX5 and IRF4 on key sequences of the Igh locus. Calmodulin shows proximity with each of them after BCR stimulation. BCR signaling reduces binding of the proteins to some of the target sites on the Igh locus, and calmodulin resistance of E2A blocks these reductions. AID binds directly to the bHLH domain of E2A and to the PD domain of PAX5. E2A, AID, PAX5 and IRF4 are components of a CSR complex that is redistributed on the Igh locus by BCR signaling through calmodulin binding.


Molecular Immunology | 2014

Expression and recruitment of uracil-DNA glycosylase are regulated by E2A during antibody diversification.

Anders Wallenius; Jannek Hauser; Per Arne Aas; Antonio Sarno; Bodil Kavli; Hans E. Krokan; Thomas Grundström

B-lymphocytes can modify their immunoglobulin (Ig) genes to generate specific antibodies with a new isotype and enhanced affinity against an antigen. Activation-induced cytidine deaminase (AID), which is positively regulated by the transcription factor E2A, is the key enzyme that initiates these processes by deaminating cytosine to uracil in Ig genes. Nuclear uracil-DNA glycosylase (UNG2) is subsequently required for uracil processing in the generation of high affinity antibodies of different isotypes. Here we show that the transcription factor E2A binds to the UNG2 promoter and represses UNG2 expression. Inhibition of E2A by binding of Ca(2+)-activated calmodulin alleviates this repression. Furthermore, we demonstrate that UNG2 preferentially accumulates in regions of the Ig heavy chain (IgH) gene containing AID hotspots. Calmodulin inhibition of E2A strongly enhances this UNG2 accumulation, indicating that it is negatively regulated by E2A as well. We show also that over-expression of E2A can suppress class switch recombination. The results suggest that E2A is a key factor in regulating the balance between AID and UNG2, both at expression and Ig targeting levels, to stimulate Ig diversification and suppress normal DNA repair processes.


FEBS Journal | 2015

Signal regulated localisation of a mutagenic protein complex at the Igh locus

Jannek Hauser; Christine Grundström; Ramesh Kumar; Thomas Grundström

Posttranslational modification (PTM) of proteins is a versatile cellular process to regulate the activities of proteins. The high regioselectivity and catalysis rate of posttranslationally modifying ...Dynamic modeling showed that the topology of fatty-acid betaoxidation makes this pathway intrinsically vulnerable to substrate overload: at a high influx of palmitoyl-CoA into the pathway the flux dropped and intermediate CoA-esters accumulated extremely(Van Eunen et al., 2013 PLoS Comput Biol). We show here that inborn errors in fatty-acid metabolism aggravate the risk of amitochondrial catastrophe.We applied the previously constructed dynamic model to study the impact of multiple acyl-CoA dehydrogenase deficiency(MADD) and medium-chain acyl-CoA dehydrogenase deficiency(MCADD) on the kinetics of fatty acid oxidation. We explored the relation between the deficiencies and metabolite profiles and calculated which profiles might enhance the risk of pathway overload. MADD patients show accumulation of acylcarnitines acrossall chain lengths. In contrast, MCADD patients accumulate the medium-chain acylcarnitines. A linear non-competition model could not explain this, as it predicted exclusive accumulation of longer chain-length metabolites in MADD. This provides the first experimental evidence that molecular competition at the enzyme level is physiologically relevant for fatty-acid oxidation. Subsequently,this more realistic competition model was fitted to either mouse liver data or to disease-specific patient plasma data. When the substrate concentration was varied, both MADD and MCADD enhanced the accumulation of intermediate metabolite sand the flux declined already at lower substrate concentrations compared to the model without enzyme deficiencies.We hypothesize that the pathway structure of the beta-oxidationin which substrates compete for enzymes, is at the basis of the disease phenotypes associated with enzyme deficiencies.

Collaboration


Dive into the Jannek Hauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyoti Verma-Gaur

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Sarno

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bodil Kavli

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge