Janneke D.M. Molkenboer-Kuenen
Radboud University Nijmegen Medical Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janneke D.M. Molkenboer-Kuenen.
The Journal of Nuclear Medicine | 2010
Sandra Heskamp; Hanneke W. M. van Laarhoven; Janneke D.M. Molkenboer-Kuenen; Gerben M. Franssen; Yvonne M.H. Versleijen-Jonkers; Wim J.G. Oyen; Winette T. A. van der Graaf; Otto C. Boerman
The insulinlike growth factor 1 receptor (IGF-1R) is a new target for the treatment of breast cancer. Patients with breast cancer lesions that express IGF-1R may benefit from treatment with anti–IGF-1R antibodies. Therefore, the aim of the present study was to develop a noninvasive, in vivo imaging method, using radiolabeled antibodies, to visualize IGF-1R expression. Methods: R1507 is a monoclonal antibody directed against the IGF-1R. In vitro, the affinity and internalization kinetics of 111In-R1507 were determined using the IGF-1R–expressing triple-negative breast cancer cell line SUM149. In vivo, the pharmacodynamics of 111In-R1507 and 125I-R1507 were determined in mice with subcutaneous SUM149 tumors. 111In-R1507 SPECT and 89Zr-R1507 PET images of mice with subcutaneous SUM149 tumors were acquired at 1, 3, and 7 d after injection. Results: 111In-R1507 (concentration required to inhibit binding by 50%, 0.1 nM) was slowly internalized by SUM149 cells. 111In-R1507 specifically and efficiently accumulated in the SUM149 xenografts: the tumor uptake was 20 percentage injected dose per gram (%ID/g), 33 %ID/g, and 31 %ID/g at 1, 3, and 7 d after injection, respectively. 125I-R1507 accumulated in the tumor less efficiently. Small-animal SPECT and small-animal PET of mice clearly visualized the subcutaneous SUM149 xenograft, with increasing contrast at later time points. Conclusion: 111In-R1507 and 89Zr-R1507 are new tracers to noninvasively determine IGF-1R expression in vivo in breast cancer xenografts using SPECT and PET. In the future, these techniques may enable patient selection for IGF-1R–targeted therapy.
Cancer Research | 2015
Sandra Heskamp; Willemijn Hobo; Janneke D.M. Molkenboer-Kuenen; Daniel Olive; Wim J.G. Oyen; Harry Dolstra; Otto C. Boerman
Antibodies that block the interaction between programmed death ligand 1 (PD-L1) and PD-1 have shown impressive antitumor activity. Patients with tumors expressing PD-L1 are most likely to respond to this treatment. The aim of our study was to develop a noninvasive imaging technique to determine tumor PD-L1 expression in vivo. This could allow selection of patients that are most likely to benefit from anti-PD-1/PD-L1 treatment and to monitor PD-L1 expression during therapy. The monoclonal antibody PD-L1.3.1 was radiolabeled with Indium-111 ((111)In) and characterized using PD-L1-expressing MDA-MB-231 cells. Subsequently, the optimal antibody dose and time point for imaging was determined in mice with MDA-MB-231 xenografts. Finally, SPECT/CT imaging was performed in xenograft models with different PD-L1 expression levels and tumor sections were analyzed for PD-L1 expression using IHC. The optimal antibody dose of (111)In-PD-L1.3.1 (Kd = 1 nmol/L) for SPECT/CT imaging was ≤1 μg. Highest tumor-to-normal tissue contrast was obtained at days 3 and 7 after injection. (111)In-PD-L1.3.1 SPECT/CT showed efficient accumulation in high PD-L1-expressing tumors (MDA-MB-231 and SK-Br-3), whereas no specific uptake was observed in tumors with low or no detectable levels of PD-L1 (SUM149, BT474, and MCF-7). SPECT/CT and autoradiography showed a very heterogeneous distribution of (111)In-PD-L1.3.1 within the tumor. In conclusion, this is the first study showing the feasibility of noninvasive in vivo imaging of PD-L1 expression in tumors. (111)In-PD-L1.3.1 showed efficient and specific uptake in PD-L1 expressing xenografts. This technique may enable patient selection for PD-1 and PD-L1-targeted therapy.
International Journal of Cancer | 2013
Sandra Heskamp; Otto C. Boerman; Janneke D.M. Molkenboer-Kuenen; Wim J.G. Oyen; Winette T. A. van der Graaf; Hanneke W. M. van Laarhoven
Bevacizumab (antivascular endothelial growth factor [anti‐VEGF]) and cetuximab (antiepidermal growth factor receptor [anti‐EGFR]) are approved antibodies for treatment of cancer. However, in advanced colorectal cancer, the combination fails to improve survival. As the reason for the lack of activity is unknown, our study aims to determine the effect of bevacizumab on targeting of anti‐EGFR and insulin‐like growth factor 1 receptor (IGF‐1R) antibodies in tumors with single‐photon emission computed tomography (SPECT)/CT imaging. Mice with subcutaneous EGFR and IGF‐1R‐expressing SUM149 xenografts received a single dose of bevacizumab (10 mg/kg) or saline. After 4 days, mice were injected with radiolabeled cetuximab or R1507, an anti‐IGF‐1R antibody. A control group received a radiolabeled irrelevant IgG (hLL2). Three days later, SPECT/CT images were acquired and mice were dissected to determine the concentration of antibodies in the tissues. Tumors were analyzed immunohistochemically to determine vascular density (CD34), VEGF, EGFR and IGF‐1R expression. SPECT/CT imaging revealed that bevacizumab treatment significantly reduced tumor targeting of radiolabeled cetuximab by 40% from 33.1 ± 1.1 %ID/g to 19.8 ± 5.7 %ID/g (p = 0.009) for untreated and bevacizumab‐treated tumors, respectively. A similar effect was found for 111In‐R1507: tumor targeting of R1507 decreased by 35%. No significant differences in tumor uptake were observed in mice that received an irrelevant IgG. Uptake in normal organs was not altered by bevacizumab. Immunohistochemical analysis showed that vascular density decreased with 43%, whereas EGFR and IGF‐1R expression was unaltered. In conclusion, bevacizumab treatment significantly reduces tumor targeting of anti‐EGFR and anti‐IGF‐1R antibodies. This emphasizes the importance of timing and sequencing of bevacizumab in combination with other antibodies.
Journal of Controlled Release | 2012
Floor C. J. van de Watering; Janneke D.M. Molkenboer-Kuenen; Otto C. Boerman; Jeroen J.J.P. van den Beucken; John A. Jansen
Clinical application of calcium phosphate cement (CPC; with incorporated polymeric porogens) in an injectable form implicates that loading methods for growth factors are limited. In view of this, the current study evaluated the in vitro and in vivo release kinetics of bone morphogenetic protein-2 (BMP-2) loaded on poly(d,l-lactic-co-glycolic acid) (PLGA) microparticles (CPC/PLGA), BMP-2 incorporation into the liquid phase of CPC (CPC/liquid), and BMP-2 absorbed to the surface of preset, porous CPC (CPC/surface) as a control via an in vitro release experiment and in vivo using microSPECT imaging with (125)I-labeled BMP-2. In addition, the osteoinductive capacity of scaffolds generated via the different BMP-2 loading methods was assessed in a subcutaneous rat model. Additional controls consisted of porous CPC scaffolds (CPC/porous) and CPC/PLGA (CPC/control) without BMP-2 loading. The results revealed that it is feasible to load BMP-2 into CPC via adsorption to PLGA-microparticles or the liquid phase of CPC, which resulted in a similar release profile over the course of 28 days, despite distinct protein distribution patterns. Compared to CPC-scaffolds with surface-loaded BMP-2, these loading methods showed a similar release profile, except for a significantly decreased burst release. As such, the observed osteoinductive capacity for only CPC-scaffolds with surface-loaded BMP-2 is likely to be related to this difference in burst release. It remains unclear to what extent the differential BMP-2 loading methods for injectable CPC can affect the biological response in a bone environment.
International Journal of Cancer | 2011
B.A.W. Hoeben; Janneke D.M. Molkenboer-Kuenen; Wim J.G. Oyen; Wenny J.M. Peeters; Johannes H.A.M. Kaanders; Johan Bussink; Otto C. Boerman
Noninvasive imaging of the epidermal growth factor receptor (EGFR) in head‐and‐neck squamous cell carcinoma could be of value to select patients for EGFR‐targeted therapy. We assessed dose optimization of 111Indium‐DTPA‐cetuximab (111In‐cetuximab) for EGFR imaging in a head‐and‐neck squamous cell carcinoma xenograft model. 111In‐cetuximab slowly internalized into FaDu cells in vitro, amounting to 1.0 × 104 molecules cetuximab per cell after 24 hr (15.8% of added activity). In nude mice with subcutaneous FaDu xenograft tumors, a protein dose escalation study with 111In‐cetuximab showed highest specific accumulation in tumors at protein doses between 1 and 30 μg per mouse (mean tumor uptake 33.1 ± 3.1%ID/g, 3 days postinjection (p.i.)). The biodistribution of 111In‐cetuximab and 125I‐cetuximab was determined at 1, 3 and 7 days p.i. at optimal protein dose. Tumor uptake was favorable for 111In‐cetuximab compared to 125I‐cetuximab. With pixel‐by‐pixel analysis, good correlations were found between intratumoral distribution of 111In‐cetuximab as determined by autoradiography and EGFR expression in the same tumor sections as determined immunohistochemically (mean r = 0.74 ± 0.14; all correlations p < 0.0001). Micro Single Photon Emission Computed Tomography (MicroSPECT) scans clearly visualized FaDu tumors from 1 day p.i. onward and tumor‐to‐background contrast increased until 7 days p.i. (tumor‐to‐liver ratios 0.58 ± 0.24, 3.42 ± 0.66, 8.99 ± 4.66 and 16.33 ± 11.56, at day 0, day 1, day 3 and day 7 p.i., respectively). Our study suggests that, at optimal cetuximab imaging dose, 111In‐cetuximab can be used for visualization of EGFR expression in head‐and‐neck squamous cell carcinoma using SPECT.
Clinical Cancer Research | 2011
Emmy D.G. Fleuren; Yvonne M.H. Versleijen-Jonkers; Addy Cm van de Luijtgaarden; Janneke D.M. Molkenboer-Kuenen; Sandra Heskamp; Melissa H.S. Roeffen; Hanneke W. M. van Laarhoven; Peter J. Houghton; Wim J.G. Oyen; Otto C. Boerman; Winette T. A. van der Graaf
Purpose: To investigate whether indium-111–labeled R1507 (111In-R1507) immuno-SPECT (single—photon emission computed tomography), a novel noninvasive, in vivo screening method to visualize membranous insulin-like growth factor 1 receptor (IGF-1R) expression and accessibility, can be used to predict IGF-1R treatment (R1507) response in bone sarcomas. Experimental Design: BALB/c nude mice were subcutaneously implanted with IGF-1R–expressing human bone sarcoma xenografts (OS-1, EW-5, and EW-8) which showed high, modest, or no response, respectively, to R1507, a monoclonal antibody targeting the extracellular domain of IGF-1R. An IGF-1R–negative tumor (OS-33), unresponsive to IGF-1R inhibitors, was examined as well. Mice were injected with 111In-R1507. Biodistribution and immuno-SPECT/computed tomography imaging studies were carried out 1, 3, and 7 days p.i. in mice with OS-1 and EW-5 xenografts and 3 days p.i. in mice with EW-8 and OS-33 xenografts. Results: Biodistribution studies showed specific accumulation of 111In-R1507 in OS-1 and EW-5 xenografts (27.5 ± 6.5%ID/g and 14.0 ± 2.8%ID/g, 3 days p.i., respectively). Most importantly, 111In-R1507 uptake in IGF-1R positive, but unresponsive, EW-8 xenografts (6.5 ± 1.5%ID/g, 3 days p.i.) was similar to that of the IGF-1R–negative OS-33 tumor (5.5 ± 0.6%ID/g, 3 days p.i.). Uptake in normal tissues was low and nonspecific. Corresponding immuno-SPECT images clearly discriminated between high, modest, and nonresponding tumors by showing a homogeneous (OS-1), heterogeneous (EW-5), or nonspecific (EW-8 and OS-33) tumor uptake of 111In-R1507. Conclusions: 111In-R1507 immuno-SPECT is an excellent method to visualize membranous IGF-1R expression and target accessibility in vivo in human bone sarcoma xenografts and may serve as an independent marker to predict IGF-1R therapy (R1507) response in bone sarcoma patients. Clin Cancer Res; 17(24); 7693–703. ©2011 AACR.
BJUI | 2008
K. Hendricksen; Janneke D.M. Molkenboer-Kuenen; Egbert Oosterwijk; Christina A. Hulsbergen-van de Kaa; J. Alfred Witjes
To enable preclinical testing of intravesical therapies against non‐muscle‐invasive bladder cancer (NMIBC) in an orthotopic rat bladder tumour model, augmented by the use of serial cystoscopy for in vivo tumour assessment and follow‐up.
Theranostics | 2016
Kristell L.S. Chatalic; Sandra Heskamp; Mark Konijnenberg; Janneke D.M. Molkenboer-Kuenen; Gerben M. Franssen; Marian C. Clahsen-van Groningen; Margret Schottelius; Hans-Jürgen Wester; Wytske M. van Weerden; Otto C. Boerman; Marion de Jong
Prostate-specific membrane antigen (PSMA) is a well-established target for nuclear imaging and therapy of prostate cancer (PCa). Radiolabeled small-molecule PSMA inhibitors are excellent candidates for PCa theranostics—they rapidly and efficiently localize in tumor lesions. However, high tracer uptake in kidneys and salivary glands are major concerns for therapeutic applications. Here, we present the preclinical application of PSMA I&T, a DOTAGA-chelated urea-based PSMA inhibitor, for SPECT/CT imaging and radionuclide therapy of PCa. 111In-PSMA I&T showed dose-dependent uptake in PSMA-expressing tumors, kidneys, spleen, adrenals, lungs and salivary glands. Coadministration of 2-(phosphonomethyl)pentane-1,5-dioic acid (2-PMPA) efficiently reduced PSMA-mediated renal uptake of 111In-PSMA I&T, with the highest tumor/kidney radioactivity ratios being obtained using a dose of 50 nmol 2-PMPA. SPECT/CT clearly visualized subcutaneous tumors and sub-millimeter intraperitoneal metastases; however, high renal and spleen uptake in control mice (no 2-PMPA) interfered with visualization of metastases in the vicinity of those organs. Coadministration of 2-PMPA increased the tumor-to-kidney absorbed dose ratio during 177Lu-PSMA I&T radionuclide therapy. Hence, at equivalent absorbed dose to the tumor (36 Gy), coinjection of 2-PMPA decreased absorbed dose to the kidneys from 30 Gy to 12 Gy. Mice injected with 177Lu-PSMA I&T only, showed signs of nephrotoxicity at 3 months after therapy, whereas mice injected with 177Lu-PSMA I&T + 2-PMPA did not. These data indicate that PSMA I&T is a promising theranostic tool for PCa. PSMA-specific uptake in kidneys can be successfully tackled using blocking agents such as 2-PMPA.
PLOS ONE | 2015
Sandra Heskamp; Otto C. Boerman; Janneke D.M. Molkenboer-Kuenen; C.A.P. Wauters; L.J.A. Strobbe; Caroline M. P. W. Mandigers; Peter Bult; Wim J.G. Oyen; Winette T. A. van der Graaf; Hanneke W. M. van Laarhoven
Introduction The insulin-like growth factor 1 receptor (IGF-1R) may be involved in the development of resistance against conventional cancer treatment. The aim of this study was to assess whether IGF-1R expression of breast tumors changes during neoadjuvant therapy and to study whether these changes were associated with survival. Methods Paraffin embedded tumor tissue was collected from pretreatment biopsies and surgical resections of 62 breast cancer patients who were treated with neoadjuvant chemotherapy or endocrine therapy. IGF-1R expression was determined immunohistochemically and compared before and after treatment. Results High membranous IGF-1R expression at diagnosis correlated significantly with ER positivity, low tumor stage (stage I/II) and longer overall survival (p < 0.05). After neoadjuvant treatment, membranous IGF-1R expression remained the same in 41 (65%) tumors, was upregulated in 11 (18%) tumors and downregulated in 11 (18%) tumors. Changes in membranous IGF-1R expression were associated with overall survival (log-rank test: p = 0.013, multivariate cox-regression: p = 0.086). Mean overall survival time for upregulation, no change, and downregulation in IGF-1R expression was 3.0 ± 0.5 years, 7.3 ± 1.0 years and 15.0 ± 1.8 years, respectively. Changes in other parameters were not significantly associated with survival. Conclusion Neoadjuvant therapy can induce changes in IGF-1R expression. Upregulation of IGF-1R expression after neoadjuvant treatment is a poor prognostic factor in breast cancer patients, providing a rationale for incorporating anti-IGF-1R drugs in the management of these patients.
The Journal of Nuclear Medicine | 2017
Sandra Heskamp; Reinier Hernandez; Janneke D.M. Molkenboer-Kuenen; Markus Essler; Frank Bruchertseifer; Alfred Morgenstern; Erik J. Steenbergen; Weibo Cai; Christof Seidl; William J. McBride; David M. Goldenberg; Otto C. Boerman
Pretargeted radioimmunotherapy (PRIT) with the β-emitting radionuclide 177Lu is an attractive approach to treat carcinoembryonic antigen (CEA)–expressing tumors. The therapeutic efficacy of PRIT might be improved using α-emitting radionuclides such as 213Bi. Herein, we report and compare the tumor-targeting properties and therapeutic efficacy of 213Bi and 177Lu for PRIT of CEA-expressing xenografts, using the bispecific monoclonal antibody TF2 (anti-CEA × anti–histamine-succinyl-glycine [HSG]) and the di-HSG-DOTA peptide IMP288. Methods: The in vitro binding characteristics of 213Bi-IMP288 were compared with those of 177Lu-IMP288. Tumor targeting of 213Bi-IMP288 and 177Lu-IMP288 was studied in mice bearing subcutaneous LS174T tumors that were pretargeted with TF2. Finally, the effect of 213Bi-IMP288 (6, 12, or 17 MBq) and 177Lu-IMP288 (60 MBq) on tumor growth and survival was assessed. Toxicity was determined by monitoring body weight, analyzing blood samples for hematologic and renal toxicity (hemoglobin, leukocytes, platelets, creatinine), and immunohistochemical analysis of the kidneys. Results: The in vitro binding characteristics of 213Bi-IMP288 (dissociation constant, 0.45 ± 0.20 nM) to TF2-pretargeted LS174T cells were similar to those of 177Lu-IMP288 (dissociation constant, 0.53 ± 0.12 nM). In vivo accumulation of 213Bi-IMP288 in LS174T tumors was observed as early as 15 min after injection (9.2 ± 2.0 percentage injected dose [%ID]/g). 213Bi-IMP288 cleared rapidly from the circulation; at 30 min after injection, the blood levels were 0.44 ± 0.28 %ID/g. Uptake in normal tissues was low, except for the kidneys, where uptake was 1.8 ± 1.1 %ID/g at 30 min after injection. The biodistribution of 213Bi-IMP288 was comparable to that of 177Lu-IMP288. Mice treated with a single dose of 213Bi-IMP288 or 177Lu-IMP288 showed significant inhibition of tumor growth. Median survival for the groups treated with phosphate-buffered saline, 6 MBq 213Bi-IMP288, 12 MBq 213Bi-IMP288, and 60 MBq 177Lu-IMP288 was 22, 31, 45, and 42 d, respectively. Mice receiving 17 MBq 213Bi-IMP288 showed significant weight loss, resulting in a median survival of only 24 d. No changes in hemoglobin, platelets, or leukocytes were observed in the treatment groups. However, immunohistochemical analysis of the kidneys of mice treated with 17 or 12 MBq 213Bi-IMP288 showed signs of tubular damage, indicating nephrotoxicity. Conclusion: To our knowledge, this study shows for the first time that PRIT with TF2 and 213Bi-IMP288 is feasible and at least as effective as 177Lu-IMP288. However, at higher doses, kidney toxicity was observed. Future studies are warranted to determine the optimal dosing schedule to improve therapeutic efficacy while reducing renal toxicity.
Collaboration
Dive into the Janneke D.M. Molkenboer-Kuenen's collaboration.
Yvonne M.H. Versleijen-Jonkers
Radboud University Nijmegen Medical Centre
View shared research outputs