Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janny Takens is active.

Publication


Featured researches published by Janny Takens.


European Journal of Heart Failure | 2011

Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load.

Beatrijs Bartelds; Marinus A.J. Borgdorff; Annemiek Smit-van Oosten; Janny Takens; Bibiche Boersma; Marcel G.J. Nederhoff; Nynke J. Elzenga; Wiek H. van Gilst; Leon J. De Windt; Rolf M.F. Berger

Right ventricular (RV) dysfunction is a major determinant of long‐term morbidity and mortality in congenital heart disease. The right ventricle (RV) is genetically different from the left ventricle (LV), but it is unknown as to whether this has consequences for the cellular responses to abnormal loading conditions. In the LV, calcineurin‐activation is a major determinant of pathological hypertrophy and an important target for therapeutic strategies. We studied the functional and molecular adaptation of the RV in mouse models of pressure and volume load, focusing on calcineurin‐activation.


Chest | 2012

Mast Cell Inhibition Improves Pulmonary Vascular Remodeling in Pulmonary Hypertension

Beatrijs Bartelds; Rosa Laura E. van Loon; Saffloer Mohaupt; Hans Wijnberg; Michael G. Dickinson; Bibiche Boersma; Janny Takens; Mirjam E. van Albada; Rolf M.F. Berger

BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive angioproliferative disease with high morbidity and mortality. Although the histopathology is well described, its pathogenesis is largely unknown. We previously identified the increased presence of mast cells and their markers in a rat model of flow-associated PAH. The aim of this study was to test the effect of mast cell stabilization on pulmonary vascular remodeling in experimental PAH. METHODS Rats with flow-associated PAH created by monocrotaline and an aorto-caval shunt were treated with the mast cell stabilizer cromolyn and compared with untreated rats and control rats. Further, we treated a group of rats with PAH with an inhibitor (TY-51469) of chymase, one of the mast cell proteases. The effects on pulmonary vascular remodeling and hemodynamics were assessed. RESULTS Rats with PAH had increased mast cells, chymase activity, and inflammatory markers. Treatment with mast cell stabilizer attenuated pulmonary vascular remodeling but not hemodynamics. A lower pulmonary chymase activity correlated with more favorable pulmonary vascular remodeling as well as hemodynamics and inflammatory markers. CONCLUSIONS We showed in rats with PAH that mast cell stabilization attenuated pulmonary vascular remodeling and that a lower chymase activity correlated with more favorable hemodynamics and pulmonary vascular remodeling. The results of this experimental study support the concept of the use of antiinflammatory therapy by mast cell stabilizers, a group of drugs already licensed for clinical use, to attenuate disease progression in PAH.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs

Beatrijs Bartelds; Jan-Willem C. Gratama; Hennie Knoester; Janny Takens; Gioia B. Smid; Jan G. Aarnoudse; Hugo S. A. Heymans; Jaap R. G. Kuipers

No information is available on perinatal changes in myocardial metabolism in vivo. We measured myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in chronically instrumented fetal, newborn (1-4 days), and juvenile (7 wk) lambs, by measuring aorta-coronary sinus concentration differences and blood flow. In the fetal lambs, myocardial supply and flux of fatty acids were zero. In the newborn lambs, the supply of fatty acids increased tenfold, but there was no flux of fatty acids. Carbohydrates were the major energy source in fetal and newborn lambs, accounting for 89 and 69% of myocardial oxygen consumption, respectively. In the juvenile lambs, the flux of fatty acids was increased threefold. The supply and flux of carbohydrates were decreased (by 31 and 82%, respectively). The supply and flux of ketone bodies gradually increased with age. We show that the myocardium of the lamb in vivo does not switch immediately after birth from carbohydrates to fatty acids. The mechanisms involved in the development of myocardial fatty acid oxidation remain to be elucidated.


American Journal of Pathology | 2011

Egr-1 expression during neointimal development in flow-associated pulmonary hypertension.

Michael G. Dickinson; Beatrijs Bartelds; Grietje Molema; Marinus A.J. Borgdorff; Bibiche Boersma; Janny Takens; Michel Weij; Pieter Wichers; Hannie Sietsma; Rolf M.F. Berger

In flow-associated pulmonary arterial hypertension (PAH), increased pulmonary blood flow is an essential trigger for neointimal formation. Using microarray analysis, we recently found that the early growth response protein 1 (Egr-1) transcription factor is increased in experimental flow-associated end-stage PAH. Its role in PAH development is unknown. Here, we assessed the spatiotemporal expression of Egr-1 during neointimal development in flow-associated PAH. Flow-associated PAH was produced in rats by combining monocrotaline administration with an aortocaval shunt. Animals were sacrificed 1 day before or 1 day, 1 week, or 4 to 5 weeks after flow addition. Egr-1 expression was spatiotemporally assessed using laser microdissection, quantitative real-time PCR and immunohistochemistry. In addition, Egr-1 expression was assessed in a non-neointimal pulmonary hypertension model and in human PAH associated with congenital shunt. In 4 to 5 weeks, rats subjected to increased flow developed PAH with neointimal lesions. Egr-1 mRNA was increased 1 day after flow addition and in end-stage PAH, whereas monocrotaline only did not result in increased Egr-1 mRNA. Directly after flow addition, Egr-1 was expressed in endothelial cells. During disease development, Egr-1 protein expression increased and migrated throughout the vessel wall. In PAH patients, Egr-1 was expressed in vessels with media hypertrophy and neointimal lesions, including plexiform lesions. Thus, Egr-1 may be an important regulator in the development of pulmonary neointimal lesions induced by increased pulmonary blood flow.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Parental vitamin D deficiency during pregnancy is associated with increased blood pressure in offspring via Panx1 hypermethylation

Laura M. G. Meems; Hasan Mahmud; Hendrik Buikema; Jörg Tost; Sven Michel; Janny Takens; Rikst Nynke Verkaik-Schakel; Inge Vreeswijk-Baudoin; Irene Mateo Leach; Torsten Plösch; Rudolf A. de Boer

Vitamin D deficiency is one of the most common nutritional deficiencies worldwide. Maternal vitamin D deficiency is associated with increased susceptibility to hypertension in offspring, but the reasons for this remain unknown. The aim of this study was to determine if parental vitamin D deficiency leads to altered DNA methylation in offspring that may relate to hypertension. Male and female Sprague-Dawley rats were fed a standard or vitamin D-depleted diet. After 10 wk, nonsibling rats were mated. The conceived pups received standard chow. We observed an increased systolic and diastolic blood pressure in the offspring from depleted parents (F1-depl). Genome-wide methylation analyses in offspring identified hypermethylation of the promoter region of the Pannexin-1 (Panx1) gene in F1-depl rats. Panx1 encodes a hemichannel known to be involved in endothelial-dependent relaxation, and we demonstrated that in F1-depl rats the increase in blood pressure was associated with impaired endothelial relaxation of the large vessels, suggesting an underlying biological mechanism of increased blood pressure in children from parents with vitamin deficiency. Parental vitamin D deficiency is associated with epigenetic changes and increased blood pressure levels in offspring.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Increased myocardial lactate oxidation in lambs with aortopulmonary shunts at rest and during exercise

Gertie C. M. Beaufort-Krol; Janny Takens; Marieke C. Molenkamp; Gioia B. Smid; Koos J. Meuzelaar; W. G. Zijlstra; Jaap R. G. Kuipers

Free fatty acids are the major fuels for the myocardium, but during a higher load carbohydrates are preferred. Previously, we demonstrated that myocardial net lactate uptake was higher in lambs with aortopulmonary shunts than in control lambs. To determine whether this was caused by an increased lactate uptake and oxidation or by a decreased lactate release, we studied myocardial lactate and glucose metabolism with 13C-labeled substrates in 36 lambs in a fasting, conscious state. The lambs were assigned to two groups: a resting group consisting of 8 shunt and 9 control lambs, and an exercise group (50% of peak O2 consumption) consisting of 9 shunt and 10 control lambs. Myocardial lactate oxidation was higher in shunt than in control lambs (mean +/- SE, rest: 10.33 +/- 2.61 vs. 0. 17 +/- 0.82, exercise: 38.05 +/- 8.87 vs. 16.89 +/- 4.78 micromol. min-1. 100 g-1; P < 0.05). There was no difference in myocardial lactate release between shunt and control lambs. Oxidation of exogenous glucose, which was approximately zero at rest, increased during exercise in shunt and control lambs. The contribution of glucose and lactate to myocardial oxidative metabolism increased during exercise compared with at rest in both shunt and control lambs. We conclude that myocardial lactate oxidation is higher in shunt than in control lambs, both at rest and during exercise, and that the contribution of carbohydrates in myocardial oxidative metabolism in shunt lambs is higher than in control lambs. Thus it appears that this higher contribution of carbohydrates occurs not only in the case of pressure-overloaded hearts but also in myocardial hypertrophy due to volume overloading.Free fatty acids are the major fuels for the myocardium, but during a higher load carbohydrates are preferred. Previously, we demonstrated that myocardial net lactate uptake was higher in lambs with aortopulmonary shunts than in control lambs. To determine whether this was caused by an increased lactate uptake and oxidation or by a decreased lactate release, we studied myocardial lactate and glucose metabolism with13C-labeled substrates in 36 lambs in a fasting, conscious state. The lambs were assigned to two groups: a resting group consisting of 8 shunt and 9 control lambs, and an exercise group (50% of peak O2consumption) consisting of 9 shunt and 10 control lambs. Myocardial lactate oxidation was higher in shunt than in control lambs (mean ± SE, rest: 10.33 ± 2.61 vs. 0.17 ± 0.82, exercise: 38.05 ± 8.87 vs. 16.89 ± 4.78 μmol ⋅ min-1 ⋅ 100 g-1; P < 0.05). There was no difference in myocardial lactate release between shunt and control lambs. Oxidation of exogenous glucose, which was approximately zero at rest, increased during exercise in shunt and control lambs. The contribution of glucose and lactate to myocardial oxidative metabolism increased during exercise compared with at rest in both shunt and control lambs. We conclude that myocardial lactate oxidation is higher in shunt than in control lambs, both at rest and during exercise, and that the contribution of carbohydrates in myocardial oxidative metabolism in shunt lambs is higher than in control lambs. Thus it appears that this higher contribution of carbohydrates occurs not only in the case of pressure-overloaded hearts but also in myocardial hypertrophy due to volume overloading.


Journal of Mass Spectrometry | 1998

Determination of organ substrate oxidation in vivo by measurement of 13CO2 concentration in blood

Gertie C. M. Beaufort-Krol; Janny Takens; Marieke C. Molenkamp; Gioia B. Smid; W. G. Zijlstra; J. R. G. Kuipers

Substrate oxidation by various organs in animals as well as in humans is usually studied by experiments in which radioactively labeled substrates are used and the production of 14CO2 is measured. In vivo, substrate oxidation by an organ has, up to now, not been determined by means of stable isotopes. Problems in the determination of the concentration of 13CO2 in blood may have impeded the use of 13C-labeled substrates. For the determination of 13CO2 concentration in blood a direct method for the determination of total CO2 concentration in blood was combined with the determination of the isotope ratio (13C/12C) of CO2 by isotope ratio mass spectrometry. The intra-assay relative standard deviation of the CO2 concentration (mean: 19.26 mmol l-1; n = 7) was 0.8%. The inter-assay relative standard deviation of the CO2 concentration in solutions of a weighed amount of Na2CO3 determined over a 5 year period was 0.64% (mean: 21.99 mmol l-1; n = 22). The intra-assay relative standard deviation of 13C in CO2 was 0.03% (mean 13C/12C: 0.0111557; n = 5). From the 13CO2 concentration in arterial and venous blood, substrate oxidation by various organs can be calculated. As an illustration, the determination of myocardial glucose oxidation in lambs, both at rest and during exercise, is described.


Frontiers in Pediatrics | 2015

Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase.

Rosa Laura E. van Loon; Beatrijs Bartelds; Frank A. D. T. G. Wagener; Nada Affara; Saffloer Mohaupt; Hans Wijnberg; Sebastiaan W.C. Pennings; Janny Takens; Rudolphus Berger

Background Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). Methods Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the presence or absence of the selective HO-activity inhibitor tin-mesoporphyrin (SnMP). HO activity, circulating EPCs and pulmonary vascular lesions were assessed after 3 weeks. Results In PAH rats, circulating EPCs were decreased and HO activity was increased compared to control. EPO treatment restored circulating EPCs and improved pulmonary vascular remodeling, as shown by a reduced wall thickness and occlusion rate of the intra-acinar vessels. Inhibition of HO activity with SnMP aggravated PAH. Moreover, SnMP treatment abrogated EPO-induced amelioration of pulmonary vascular remodeling, while surprisingly further increasing circulating EPCs as compared with EPO alone. Conclusion In experimental PAH, EPO treatment restored the number of circulating EPCs to control level, improved pulmonary vascular remodeling, and showed important interplay with HO activity. Inhibition of increased HO activity in PAH rats exacerbated progression of pulmonary vascular remodeling, despite the presence of restored number of circulating EPCs. We suggest that both EPO-induced HO-1 and EPCs are promising targets to ameliorate the pulmonary vasculature in PAH.


Metabolism-clinical and Experimental | 1999

Lower arterial glucose concentrations in lambs with aortopulmonary shunts after an 18-hour fast

Gertie C. M. Beaufort-Krol; Janny Takens; Gioia B. Smid; Marieke C. Molenkamp; W. G. Zijlstra; J. R. G. Kuipers

Spontaneously occurring hypoglycemia has been described in children with severe acute congestive heart failure. Hypoglycemia may be the result of an increase in glucose utilization in tissues, a decrease in glucose production, or a decrease in the dietary intake of nutrients. To determine whether hypoglycemia may also occur in congenital heart disease with volume overloading, we investigated glucose metabolism during and after an 18-hour fast in nine lambs with an aortopulmonary left-to-right shunt and nine control lambs. Plasma levels of hormones involved in the endocrine control of glucose metabolism were determined. The glucose production rate (rate of appearance [Ra]) was studied using [U-13C]glucose. Gluconeogenesis through the Cori cycle was estimated by measuring glucose 13C recycling. The arterial glucose concentration (3,409 +/- 104 v 4,338 +/- 172 micromol/L, P < .001) and Ra of glucose (16.97 +/- 0.89 v 25.49 +/- 4.28 micromol x min(-1) x kg(-1), P < .05) were lower in shunt versus control lambs. There were no differences in hormone levels between control and shunt lambs. Fractional glucose 13C recycling via the Cori cycle (6.9% +/- 2.8% v 7.1% +/- 2.5%) and gluconeogenesis from pyruvate and lactate (1.24 +/- 0.58 v 1.95 +/- 0.67 micromol x min(-1) x kg(-1)) were similar in both groups of lambs. The sum of glycogenolysis and gluconeogenesis from precursors other than pyruvate and lactate was lower in shunt versus control lambs (15.73 +/- 1.07 v 23.54 +/- 4.27 micromol x min(-1) x kg(-1), P < .05). In conclusion, after an 18-hour fast, the arterial glucose concentration is lower in lambs with aortopulmonary shunts. This lower glucose concentration is associated with a decreased glucose production rate. In shunt lambs, glycogenolysis is decreased, while there is no difference in gluconeogenesis or hormonal control.


Pediatric Research | 1996

Increased myocardial lactate oxidation in lambs with an aortopulmonary left-to-right shunt.

Gertie C. M. Beaufort-Krol; Janny Takens; Mc Molenkamp; Gioia B. Smid; W. G. Zijlstra; Kuipers

INCREASED MYOCARDIAL LACTATE OXIDATION IN LAMBS WITH AN AORTOPULMONARY LEFT-TO-RIGHT SHUNT. † 118

Collaboration


Dive into the Janny Takens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrijs Bartelds

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jrg Kuipers

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bibiche Boersma

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Dickinson

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge