Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janny van den Burg is active.

Publication


Featured researches published by Janny van den Burg.


Cell | 1986

Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA

Rob Benne; Janny van den Burg; Just P. J. Brakenhoff; Paul Sloof; Jacques H. van Boom; M. Tromp

The mitochondrial cytochrome oxidase (cox) subunit II gene from trypanosomes contains a frameshift at amino acid 170. This gene is highly conserved in different trypanosome species, suggesting that it is functional. Sequence determination of coxII transcripts of T. brucei and C. fasciculata reveals four extra, reading frame-restoring nucleotides at the frameshift position that are not encoded in the DNA. Southern blot analysis of DNA of both trypanosome species failed to show the existence of a second version of the coxII gene. We conclude, therefore, that the extra nucleotides are added during or after transcription of the frameshift gene by an RNA-editing process.


Eukaryotic Cell | 2006

Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans.

Katarzyna Piekarska; Els Mol; Marlene van den Berg; Guy P.M.A. Hardy; Janny van den Burg; Carlo W.T. van Roermund; Donna M. MacCallum; Frank C. Odds; Ben Distel

ABSTRACT Phagocytic cells form the first line of defense against infections by the human fungal pathogen Candida albicans. Recent in vitro gene expression data suggest that upon phagocytosis by macrophages, C. albicans reprograms its metabolism to convert fatty acids into glucose by inducing the enzymes of the glyoxylate cycle and fatty acid β-oxidation pathway. Here, we asked whether fatty acid β-oxidation, a metabolic pathway localized to peroxisomes, is essential for fungal virulence by constructing two C. albicans double deletion strains: a pex5Δ/pex5Δ mutant, which is disturbed in the import of most peroxisomal enzymes, and a fox2Δ/fox2Δ mutant, which lacks the second enzyme of the β-oxidation pathway. Both mutant strains had strongly reduced β-oxidation activity and, accordingly, were unable to grow on media with fatty acids as a sole carbon source. Surprisingly, only the fox2Δ/fox2Δ mutant, and not the pex5Δ/pex5Δ mutant, displayed strong growth defects on nonfermentable carbon sources other than fatty acids (e.g., acetate, ethanol, or lactate) and showed attenuated virulence in a mouse model for systemic candidiasis. The degree of virulence attenuation of the fox2Δ/fox2Δ mutant was comparable to that of the icl1Δ/icl1Δ mutant, which lacks a functional glyoxylate cycle and also fails to grow on nonfermentable carbon sources. Together, our data suggest that peroxisomal fatty acid β-oxidation is not essential for virulence of C. albicans, implying that the attenuated virulence of the fox2Δ/fox2Δ mutant is largely due to a dysfunctional glyoxylate cycle.


Microbiology | 2008

The activity of the glyoxylate cycle in peroxisomes of Candida albicans depends on a functional beta-oxidation pathway: evidence for reduced metabolite transport across the peroxisomal membrane.

Katarzyna Piekarska; Guy P.M.A. Hardy; Els Mol; Janny van den Burg; Karin Strijbis; Carlo W.T. van Roermund; Marlene van den Berg; Ben Distel

The glyoxylate cycle, a metabolic pathway required for generating C(4) units from C(2) compounds, is an important factor in virulence, in both animal and plant pathogens. Here, we report the localization of the key enzymes of this cycle, isocitrate lyase (Icl1; EC 4.1.3.1) and malate synthase (Mls1; EC 2.3.3.9), in the human fungal pathogen Candida albicans. Immunocytochemistry in combination with subcellular fractionation showed that both Icl1 and Mls1 are localized to peroxisomes, independent of the carbon source used. Although Icl1 and Mls1 lack a consensus type I peroxisomal targeting signal (PTS1), their import into peroxisomes was dependent on the PTS1 receptor Pex5p, suggesting the presence of non-canonical targeting signals in both proteins. Peroxisomal compartmentalization of the glyoxylate cycle is not essential for proper functioning of this metabolic pathway because a pex5Delta/Delta strain, in which Icl1 and Mls1 were localized to the cytosol, grew equally as well as the wild-type strain on acetate and ethanol. Previously, we reported that a fox2Delta/Delta strain that is completely deficient in fatty acid beta-oxidation, but has no peroxisomal protein import defect, displayed strongly reduced growth on non-fermentable carbon sources such as acetate and ethanol. Here, we show that growth of the fox2Delta/Delta strain on these carbon compounds can be restored when Icl1 and Mls1 are relocated to the cytosol by deleting the PEX5 gene. We hypothesize that the fox2Delta/Delta strain is disturbed in the transport of glyoxylate cycle products and/or acetyl-CoA across the peroxisomal membrane and discuss the possible relationship between such a transport defect and the presence of giant peroxisomes in the fox2Delta/Delta mutant.


Eukaryotic Cell | 2008

Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation.

Karin Strijbis; Carlo W.T. van Roermund; Wouter F. Visser; Els Mol; Janny van den Burg; Donna M. MacCallum; Frank C. Odds; Ekaterina Paramonova; Bastiaan P. Krom; Ben Distel

ABSTRACT In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid β-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransferase (Cat) activities. Here we show that the human fungal pathogen Candida albicans lacks peroxisomal Cit, relying exclusively on Cat activity for transport of acetyl units. Deletion of the CAT2 gene encoding the major Cat enzyme in C. albicans resulted in a strain that had lost both peroxisomal and mitochondrion-associated Cat activities, could not grow on fatty acids or C2 carbon sources (acetate or ethanol), accumulated intracellular acetyl-CoA, and showed greatly reduced fatty acid β-oxidation activity. The cat2 null mutant was, however, not attenuated in virulence in a mouse model of systemic candidiasis. These observations support our previous results showing that peroxisomal fatty acid β-oxidation activity is not essential for C. albicans virulence. Biofilm formation by the cat2 mutant on glucose was slightly reduced compared to that by the wild type, although both strains grew at the same rate on this carbon source. Our data show that C. albicans has diverged considerably from S. cerevisiae with respect to the mechanism of intracellular acetyl-CoA transport and imply that carnitine dependence may be an important trait of this human fungal pathogen.


The FASEB Journal | 2009

Identification and characterization of a complete carnitine biosynthesis pathway in Candida albicans

Karin Strijbis; Carlo W.T. van Roermund; Guy P.M.A. Hardy; Janny van den Burg; Karien Bloem; Jolanda de Haan; Naomi van Vlies; Frédéric M. Vaz; Ben Distel

Carnitine is an essential metabolite that enables intracellular transport of fatty acids and acetyl units. Here we show that the yeast Candida albicans can synthesize carnitine de novo, and we identify the 4 genes of the pathway. Null mutants of orf19.4316 (trimethyl‐ lysine dioxygenase), orf19.6306 (trimethylaminobutyral‐ dehyde dehydrogenase), and orf19.7131 (butyrobetaine dioxygenase) lacked their respective enzymatic activities and were unable to utilize fatty acids, acetate, or ethanol as a sole carbon source, in accordance with the strict requirement for carnitine‐mediated transport under these growth conditions. The second enzyme of carnitine biosynthesis, hydroxytrimethyllysine aldolase, is encoded by orf19.6305, a member of the threonine aldolase (TA) family in C. albicans. A strain lacking orf19.6305 showed strongly reduced growth on fatty acids and was unable to utilize either acetate or ethanol, but TA activity was unaffected. Growth of the null mutants on nonfermentable carbon sources is restored only by carnitine biosynthesis intermediates after the predicted enzymatic block in the pathway, which provides independent evidence for a specific defect in carnitine biosynthesis for each of the mutants. In conclusion, we have genetically characterized a complete carnitine biosynthesis pathway in C. albicans and show that a TA family member is mainly involved in the aldolytic cleavage of hydroxytrimethyllysine in vivo.— Strijbis, K., Van Roermund, C. W. T., Hardy, G. P., Van den Burg, J.,Bloem, K., De Haan, J., Van Vlies, N., Wanders, R. J. A., Vaz, F. M., Distel, B. Identification and characterization of a complete carnitine biosynthesis pathway in Candida albicans. FASEBJ. 23, 2349–2359 (2009)


Journal of Biological Chemistry | 2010

Contributions of Carnitine Acetyltransferases to Intracellular Acetyl Unit Transport in Candida albicans

Karin Strijbis; Carlo W.T. van Roermund; Janny van den Burg; Marlene van den Berg; Guy P.M.A. Hardy; Ben Distel

Transport of acetyl-CoA between intracellular compartments is mediated by carnitine acetyltransferases (Cats) that reversibly link acetyl units to the carrier molecule carnitine. The genome of the opportunistic pathogenic yeast Candida albicans encodes several (putative) Cats: the peroxisomal and mitochondrial Cat2 isoenzymes encoded by a single gene and the carnitine acetyltransferase homologs Yat1 and Yat2. To determine the contributions of the individual Cats, various carnitine acetyltransferase mutant strains were constructed and subjected to phenotypic and biochemical analyses on different carbon sources. We show that mitochondrial Cat2 is required for the intramitochondrial conversion of acetylcarnitine to acetyl-CoA, which is essential for a functional tricarboxylic acid cycle during growth on oleate, acetate, ethanol, and citrate. Yat1 is cytosolic and contributes to acetyl-CoA transport from the cytosol during growth on ethanol or acetate, but its activity is not required for growth on oleate. Yat2 is also cytosolic, but we were unable to attribute any function to this enzyme. Surprisingly, peroxisomal Cat2 is essential neither for export of acetyl units during growth on oleate nor for the import of acetyl units during growth on acetate or ethanol. Oxidation of fatty acids still takes place in the absence of peroxisomal Cat2, but biomass formation is absent, and the strain displays a growth delay on acetate and ethanol that can be partially rescued by the addition of carnitine. Based on our results, we present a model for the intracellular flow of acetyl units under various growth conditions and the roles of each of the Cats in this process.


Journal of Bioenergetics and Biomembranes | 1994

RNA editing in mitochondria of cultured trypanosomatids: Translatable mRNAs for NADH-dehydrogenase subunits are missing

Paul Sloof; Gert Jan Arts; Janny van den Burg; Hans van der Spek; Rob Benne

RNA editing in mitochondria of kinetoplastid protozoa involves the posttranscriptional insertion and deletion of uridylate residues in protein encoding regions of pre-mRNAs. Editing is required to remove gene-encoded translational defects or to convert a nonsense sequence into a sense message. In cultured trypanosomatids, however, translationally defective pre-mRNAs for a number of NADH-dehydrogenase subunits are not converted into functional mRNAs by editing. In this report, the available data are discussed in the context of current models for RNA editing.


Eukaryotic Cell | 2015

Identification and Characterization of Rvs162/Rvs167-3, a Novel N-BAR Heterodimer in the Human Fungal Pathogen Candida albicans

Areti Gkourtsa; Janny van den Burg; Karin Strijbis; Teja Avula; Sietske Bijvoets; Dave Timm; Frans Hochstenbach; Ben Distel

ABSTRACT Membrane reshaping resides at the core of many important cellular processes, and among its mediators are the BAR (Bin, Amphiphysin, Rvs) domain-containing proteins. We have explored the diversity and function of the Rvs BAR proteins in Candida albicans and identified a novel family member, Rvs167-3 (orf19.1861). We show that Rvs167-3 specifically interacts with Rvs162 to form a stable BAR heterodimer able to bind liposomes in vitro. A second, distinct heterodimer is formed by the canonical BAR proteins Rvs161 and Rvs167. Purified Rvs161/Rvs167 complex also binds liposomes, indicating that C. albicans expresses two functional BAR heterodimers. We used live-cell imaging to localize green fluorescent protein (GFP)-tagged Rvs167-3 and Rvs167 and show that both proteins concentrate in small cortical spots. However, while Rvs167 strictly colocalizes with the endocytic marker protein Abp1, we do not observe any colocalization of Rvs167-3 with sites of endocytosis marked by Abp1. Furthermore, the rvs167-3Δ/Δ mutant is not defective in endocytosis and strains lacking Rvs167-3 or its partner Rvs162 do not display increased sensitivity to high salt concentrations or decreased cell wall integrity, phenotypes which have been observed for rvs167Δ/Δ and rvs161Δ/Δ strains and which are linked to endocytosis defects. Taken together, our results indicate different roles for the two BAR heterodimers in C. albicans: the canonical Rvs161/Rvs167 heterodimer functions in endocytosis, whereas the novel Rvs162/Rvs167-3 heterodimer seems not to be involved in this process. Nevertheless, despite their different roles, our phenotypic analysis revealed a genetic interaction between the two BAR heterodimers, suggesting that they may have related but distinct membrane-associated functions.


Microbial Cell | 2018

A versatile plasmid system for reconstitution and analysis of mammalian ubiquitination cascades in yeast

Rossella Avagliano Trezza; Janny van den Burg; Nico van den Oever; Ben Distel

Ubiquitination is a posttranslational protein modification that regulates most aspects of cellular life. The sheer number of ubiquitination enzymes that are present in a mammalian cell, over 700 in total, has thus far hampered the analysis of distinct protein ubiquitination cascades in a cellular context. To overcome this complexity we have developed a versatile vector system that allows the reconstitution of specific ubiquitination cascades in the model eukaryote Saccharomyces cerevisae (baker’s yeast). The vector system consists of 32 modular yeast shuttle plasmids allowing inducible or constitutive expression of up to four proteins of interest in a single cell. To demonstrate the validity of the system, we show that co-expression in yeast of the mammalian HECT type E3 ubiquitin ligase E6AP (E6-Associated Protein) and a model substrate faithfully recapitulates E6AP-dependent substrate ubiquitination and degradation. In addition, we show that the endogenous sumoylation pathway of S. cerevisiae can specifically sumoylate mouse PML (Promyelocytic leukemia protein). In conclusion, the yeast vector system described in this paper provides a versatile tool to study complex post-translational modifications in a cellular setting.


Microbiological Research | 2016

Binding of a proline-independent hydrophobic motif by the Candida albicans Rvs167-3 SH3 domain.

Areti Gkourtsa; Janny van den Burg; Teja Avula; Frans Hochstenbach; Ben Distel

Src-homology 3 (SH3) domains are small protein-protein interaction modules. While most SH3 domains bind to proline-x-x-proline (PxxP) containing motifs in their binding partners, some SH3 domains recognize motifs other than proline-based sequences. Recently, we showed that the SH3 domain of Candida albicans Rvs167-3 binds peptides enriched in hydrophobic residues and containing a single proline residue (RΦxΦxΦP, where x is any amino acid and Φ is a hydrophobic residue). Here, we demonstrate that the proline in this motif is not required for Rvs167-3 SH3 recognition. Through mutagenesis studies we show that binding of the peptide ligand involves the conserved tryptophan in the canonical PxxP binding pocket as well as residues in the extended n-Src loop of Rvs167-3 SH3. Our studies establish a novel, proline-independent, binding sequence for Rvs167-3 SH3 (RΦxΦxΦ) that is comprised of a positively charged residue (arginine) and three hydrophobic residues.

Collaboration


Dive into the Janny van den Burg's collaboration.

Top Co-Authors

Avatar

Ben Distel

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Rob Benne

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar

Karin Strijbis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Sloof

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Els Mol

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge