Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where János Kádas is active.

Publication


Featured researches published by János Kádas.


Molecular & Cellular Proteomics | 2011

Discovery of lung cancer biomarkers by profiling the plasma proteome with monoclonal antibody libraries

Mariana Guergova-Kuras; István Kurucz; William Hempel; Nadege Tardieu; János Kádas; Carole Malderez-Bloes; Anne Jullien; Yann Kieffer; Marina Hincapie; András Guttman; Eszter Csanky; Balazs Dezso; Barry L. Karger; Laszlo Takacs

A challenge in the treatment of lung cancer is the lack of early diagnostics. Here, we describe the application of monoclonal antibody proteomics for discovery of a panel of biomarkers for early detection (stage I) of non-small cell lung cancer (NSCLC). We produced large monoclonal antibody libraries directed against the natural form of protein antigens present in the plasma of NSCLC patients. Plasma biomarkers associated with the presence of lung cancer were detected via high throughput ELISA. Differential profiling of plasma proteomes of four clinical cohorts, totaling 301 patients with lung cancer and 235 healthy controls, identified 13 lung cancer-associated (p < 0.05) monoclonal antibodies. The monoclonal antibodies recognize five different cognate proteins identified using immunoprecipitation followed by mass spectrometry. Four of the five antigens were present in non-small cell lung cancer cells in situ. The approach is capable of generating independent antibodies against different epitopes of the same proteins, allowing fast translation to multiplexed sandwich assays. Based on these results, we have verified in two independent clinical collections a panel of five biomarkers for classifying patient disease status with a diagnostics performance of 77% sensitivity and 87% specificity. Combining CYFRA, an established cancer marker, with the panel resulted in a performance of 83% sensitivity at 95% specificity for stage I NSCLC.


Journal of Virology | 2005

Amino Acid Preferences for a Critical Substrate Binding Subsite of Retroviral Proteases in Type 1 Cleavage Sites

Péter Bagossi; Tamás Sperka; Anita Fehér; János Kádas; Gábor Zahuczky; Gabriella Miklóssy; Péter Boross; József Tözsér

ABSTRACT The specificities of the proteases of 11 retroviruses representing each of the seven genera of the family Retroviridae were studied using a series of oligopeptides with amino acid substitutions in the P2 position of a naturally occurring type 1 cleavage site (Val-Ser-Gln-Asn-Tyr↓Pro-Ile-Val-Gln; the arrow indicates the site of cleavage) in human immunodeficiency virus type 1 (HIV-1). This position was previously found to be one of the most critical in determining the substrate specificity differences of retroviral proteases. Specificities at this position were compared for HIV-1, HIV-2, equine infectious anemia virus, avian myeloblastosis virus, Mason-Pfizer monkey virus, mouse mammary tumor virus, Moloney murine leukemia virus, human T-cell leukemia virus type 1, bovine leukemia virus, human foamy virus, and walleye dermal sarcoma virus proteases. Three types of P2 preferences were observed: a subgroup of proteases preferred small hydrophobic side chains (Ala and Cys), and another subgroup preferred large hydrophobic residues (Ile and Leu), while the protease of HIV-1 preferred an Asn residue. The specificity distinctions among the proteases correlated well with the phylogenetic tree of retroviruses prepared solely based on the protease sequences. Molecular models for all of the proteases studied were built, and they were used to interpret the results. While size complementarities appear to be the main specificity-determining features of the S2 subsite of retroviral proteases, electrostatic contributions may play a role only in the case of HIV proteases. In most cases the P2 residues of naturally occurring type 1 cleavage site sequences of the studied proteases agreed well with the observed P2 preferences.


Electrophoresis | 2013

Analysis of haptoglobin N‐glycome alterations in inflammatory and malignant lung diseases by capillary electrophoresis

Csaba Váradi; Stefan Mittermayr; Ákos Szekrényes; János Kádas; Laszlo Takacs; István Kurucz; András Guttman

A CE‐based method was introduced to compare the N‐glycosylation profile of haptoglobin in normal and pathologic conditions. To assess the biomarker potential of glycosylation changes in various lung diseases, haptoglobin was isolated from plasma samples of healthy, pneumonia, chronic obstructive pulmonary disease, and lung cancer patients by means of two haptoglobin‐specific monoclonal antibodies. Haptoglobin N‐glycans were then enzymatically released, fluorescently labeled, and profiled by CE. Disease‐associated changes of core and antennary fucosylation were identified by targeted exoglycosidase digestions and their levels were compared in the different patient groups. Terms such as core‐ and arm‐fucosylation degree, as well as branching degree, were introduced for easier characterization of the changes and statistical analysis was used to examine which structures were responsible for the observed differences. Increased level of α1–6 fucosylated tri‐antennary glycans was found in all disease groups compared to the control. Elevated amounts of core‐ and arm‐fucosylation on tetra‐antennary glycans were detected in the lung cancer group compared to the chronic obstructive pulmonary disease group. A larger scale study is necessary to confirm and validate these preliminary findings in the glycosylation changes of haptoglobin, so could then be used as biomarkers in the diagnosis of malignant and inflammatory lung diseases.


Journal of Proteome Research | 2010

Antigen Identification and Characterization of Lung Cancer Specific Monoclonal Antibodies Produced by mAb Proteomics

Dongdong Wang; Marina Hincapie; Mariana Guergova-Kuras; János Kádas; Laszlo Takacs; Barry L. Karger

A mass spectrometric (MS)-based strategy for antigen (Ag) identification and characterization of globally produced monoclonal antibodies (mAbs) is described. Mice were immunized with a mixture of native glycoproteins, isolated from the pooled plasma of patients with nonsmall cell lung cancer (NSCLC), to generate a library of IgG-secreting hybridomas. Prior to immunization, the pooled NSCLC plasma was subjected to 3-sequential steps of affinity fractionation, including high abundant plasma protein depletion, glycoprotein enrichment, and polyclonal antibody affinity chromatography normalization. In this paper, to demonstrate the high quality of the globally produced mAbs, we selected 3 mAbs of high differentiating power against a matched, pooled normal plasma sample. After production of large quantities of the mAbs from ascites fluids, Ag identification was achieved by immunoaffinity purification, SDS-PAGE, Western blotting, and MS analysis of in-gel digest products. One antigen was found to be complement factor H, and the other two were mapped to different subunits of haptoglobin (Hpt). The 2 Hpt mAbs were characterized in detail to assess the quality of the mAbs produced by the global strategy. The affinity of one of the mAbs to the Hpt native tetramer form was found to have a K(D) of roughly 10(-9) M and to be 2 orders of magnitude lower than the reduced form, demonstrating the power of the mAb proteomics technology in generating mAbs to the natural form of the proteins in blood. The binding of this mAb to the beta-chain of haptoglobin was also dependent on glycosylation on this chain. The characterization of mAbs in this work reveals that the global mAb proteomics process can generate high-quality lung cancer specific mAbs capable of recognizing proteins in their native state.


Virology | 2003

Human immunodeficiency virus type 1 capsid protein is a substrate of the retroviral proteinase while integrase is resistant toward proteolysis.

József Tözsér; Sergey Shulenin; János Kádas; Péter Boross; Péter Bagossi; Terry D. Copeland; Bala C Nair; Mangalasseril G Sarngadharan; Stephen Oroszlan

The capsid protein of human immunodeficiency virus type 1 was observed to undergo proteolytic cleavage in vitro when viral lysate was incubated in the presence of dithiothreitol at acidic pH. Purified HIV-1 capsid protein was also found to be a substrate of the viral proteinase in a pH-dependent manner; acidic pH (<7) was necessary for cleavage, and decreasing the pH toward 4 increased the degree of processing. Based on N-terminal sequencing of the cleavage products, the capsid protein was found to be cleaved at two sites, between residues 77 and 78 as well as between residues 189 and 190. Oligopeptides representing these cleavage sites were also cleaved at the expected peptide bonds. The presence of cyclophilin A decreased the degree of capsid protein processing. Unlike the capsid protein, integrase was found to be resistant toward proteolysis in good agreement with its presence in the preintegration complex.


Biochemical Journal | 2008

C-terminal residues of mature human T-lymphotropic virus type 1 protease are critical for dimerization and catalytic activity.

János Kádas; Péter Boross; Irene T. Weber; Péter Bagossi; Krisztina Matúz; József Tözsér

HTLV-1 [HTLV (human T-cell lymphotrophic virus) type 1] is associated with a number of human diseases. HTLV-1 protease is essential for virus replication, and similarly to HIV-1 protease, it is a potential target for chemotherapy. The primary sequence of HTLV-1 protease is substantially longer compared with that of HIV-1 protease, and the role of the ten C-terminal residues is controversial. We have expressed C-terminally-truncated forms of HTLV-1 protease with and without N-terminal His tags. Removal of five of the C-terminal residues caused a 4-40-fold decrease in specificity constants, whereas the removal of an additional five C-terminal residues rendered the protease completely inactive. The addition of the N-terminal His tag dramatically decreased the activity of HTLV-1 protease forms. Pull-down experiments carried out with His-tagged forms, gel-filtration experiments and dimerization assays provided the first unequivocal experimental results for the role of the C-terminal residues in dimerization of the enzyme. There is a hydrophobic tunnel on the surface of HTLV-1 protease close to the C-terminal ends that is absent in the HIV-1 protease. This hydrophobic tunnel can accommodate the extra C-terminal residues of HTLV-1 protease, which was predicted to stabilize the dimer of the full-length enzyme and provides an alternative target site for protease inhibition.


Electrophoresis | 2011

Fractionation of the human plasma proteome for monoclonal antibody proteomics-based biomarker discovery

András Kovács; Edit Sperling; József Lázár; Attila Balogh; János Kádas; Ákos Szekrényes; Laszlo Takacs; István Kurucz; András Guttman

mAb proteomics, a reversed biomarker discovery approach, is a novel methodology to recognize the proteins of biomarker potential, but requires subsequent antigen identification steps. While in case of high‐abundant proteins, it generally does not represent a problem, for medium or lower abundant proteins, the identification step requires a large amount of sample to assure the proper amount of antigen for the ID process. In this article, we report on the use of combined chromatographic and precipitation techniques to generate a large set of fractions representing the human plasma proteome, referred to as the Analyte Library, with the goal to use the relevant library fractions for antigen identification in conjunction with mAb proteomics. Starting from 500 mL normal pooled human plasma, this process resulted in 783 fractions with the average protein concentration of 1 mg/mL. First, the serum albumin and immunoglobulins were depleted followed by prefractionation by ammonium sulfate precipitation steps. Each precipitate was then separated by size exclusion chromatography, followed by cation and anion exchange chromatography. The 20 most concentrated ion exchange chromatography fractions were further separated by hydrophobic interaction chromatography. All chromatography and precipitation steps were carefully designed aiming to maintain the native forms of the intact proteins throughout the fractionation process. The separation route of vitamin D‐binding protein (an antibody proteomics lead) was followed in all major fractionation levels by dot blot assay in order to identify the library fraction it accumulated in and the identity of the antigen was verified by Western blot.


Protein Engineering Design & Selection | 2008

Novel macromolecular inhibitors of human immunodeficiency virus-1 protease.

Gabriella Miklóssy; József Tözsér; János Kádas; Rieko Ishima; John M. Louis; Péter Bagossi

An intracellularly expressed defective human immunodeficiency virus type-1 (HIV-1) protease (PR) monomer could function as a dominant-negative inhibitor of the enzyme that requires dimerization for activity. Based on in silico studies, two mutant PRs harboring hydrophilic mutations, capable of forming favorable inter- and intra-subunit interactions, were selected: PR(RE) containing Asp25Arg and Gly49Glu mutations, and PR(RER) containing an additional Ile50Arg mutation. The mutants were expressed and tested by PR assays, nuclear magnetic resonance (NMR) and cell culture experiments. The mutant PRs showed dose-dependent inhibition of the wild-type PR in a fluorescent microtiter plate PR assay. Furthermore, both mutants were retained by hexahistidine-tagged wild-type HIV-1 PR immobilized on nickel-chelate affinity resin. For the first time, heterodimerization between wild-type and dominant-negative mutant PRs were also demonstrated by NMR spectroscopy. (1)H-(15)N Heteronuclear Single Quantum Coherence NMR spectra showed that although PR(RE) has a high tendency to aggregate, PR(RER) exists mainly as a folded monomer at 25-35 microM concentration, but in the presence of wild-type PR in a ratio of 1:1, heterodimerization occurs with both mutants. While the recombinant virus containing the PR(RE) sequence showed only very low level of expression, expression of the viral proteins of the virus with the PR(RER) sequence was comparable with that of the wild-type. In cell culture experiments, infectivity of viral particles containing PR(RER) protein was reduced by 82%, at mutant to wild-type infective DNA ratio of 2:1.


Electrophoresis | 2014

Multicapillary SDS-gel electrophoresis for the analysis of fluorescently labeled mAb preparations: a high throughput quality control process for the production of QuantiPlasma and PlasmaScan mAb libraries.

Andrea Székely; Ákos Szekrényes; Márta Kerékgyártó; Attila Balogh; János Kádas; József Lázár; András Guttman; István Kurucz; Laszlo Takacs

Molecular heterogeneity of mAb preparations is the result of various co‐ and post‐translational modifications and to contaminants related to the production process. Changes in molecular composition results in alterations of functional performance, therefore quality control and validation of therapeutic or diagnostic protein products is essential. A special case is the consistent production of mAb libraries (QuantiPlasma™ and PlasmaScan™) for proteome profiling, quality control of which represents a challenge because of high number of mAbs (>1000). Here, we devise a generally applicable multicapillary SDS‐gel electrophoresis process for the analysis of fluorescently labeled mAb preparations for the high throughput quality control of mAbs of the QuantiPlasma™ and PlasmaScan™ libraries.


Journal of Immunological Methods | 2016

Specific detection and quantitation of bovine IgG in bioreactor derived mouse mAb preparations

Anna Gall-Debreceni; József Lázár; János Kádas; Attila Balogh; Annamaria Ferenczi; Endre Sos; Laszlo Takacs; István Kurucz

Monoclonal antibody and recombinant protein production benefits greatly from bovine serum as an additive. The caveat is that bovine serum IgG, co-purifies with mAbs and IgG Fc-containing fusion proteins and it presents a contaminant in the end products. In order to analytically validate the products, species specific reagents are needed that react with bovine IgG exclusively. Our attempts to find such commercially available reagents failed. Here, we report the production of species specific mAbs which recognize bovine IgG even in the presence of excess amount of mouse IgG. We present five mAbs: Bsi4028, Bsi4032, Bsi4033, Bsi4034 and Bsi4035 suitable to determine the presence of bovine IgG contamination via ELISA or immunoblotting in bioreactor derived mouse mAb preparations. To quantitate bovine IgG content we developed sensitive sandwich ELISAs capable to detect bovine IgG contaminant in the ng/ml (~10-11M/l) range. Finally, we show that bovine IgG is efficiently removed from bioreactor produced mouse mAb preparation via affinity depletion columns prepared with Bsi4028, Bsi4032, Bsi4033, Bsi4034, Bsi4035 mAbs.

Collaboration


Dive into the János Kádas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

István Kurucz

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene T. Weber

Georgia State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge