János Zsámboki
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by János Zsámboki.
Current Biology | 2007
Éva Kurucz; Robert Markus; János Zsámboki; Katalin Folkl-Medzihradszky; Zsuzsanna Darula; Péter Vilmos; Andor Udvardy; Ildikó Krausz; Tamas Lukacsovich; Elisabeth Gateff; Carl Johan Zettervall; Dan Hultmark; István Andó
The hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1-8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90-100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome.
Acta Biologica Hungarica | 2007
Éva Kurucz; Balázs Váczi; Robert Markus; Barbara Laurinyecz; Péter Vilmos; János Zsámboki; Kinga Csorba; Elisabeth Gateff; Dan Hultmark; István Andó
We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.
Molecular Biology and Evolution | 2008
Kálmán Somogyi; Botond Sipos; Zsolt Pénzes; Éva Kurucz; János Zsámboki; Dan Hultmark; István Andó
The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response.
Biology Open | 2015
Andrew J. Bretscher; Viktor Honti; Olivier Binggeli; Olivier Burri; Mickael Poidevin; Éva Kurucz; János Zsámboki; István Andó; Bruno Lemaitre
ABSTRACT Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion.
Journal of Innate Immunity | 2015
Robert Markus; Zita Lerner; Viktor Honti; Gábor Csordás; János Zsámboki; Gyöngyi Cinege; Árpád Párducz; Tamas Lukacsovich; Éva Kurucz; István Andó
We identified and characterized a so far unrecognized cell type, dubbed the multinucleated giant hemocyte (MGH), in the ananassae subgroup of Drosophilidae. Here, we describe the functional and ultrastructural characteristics of this novel blood cell type as well as its characterization with a set of discriminative immunological markers. MGHs are encapsulating cells that isolate and kill the parasite without melanization. They share some properties with but differ considerably from lamellocytes, the encapsulating cells of Drosophila melanogaster, the broadly used model organism in studies of innate immunity. MGHs are nonproliferative effector cells that are derived from phagocytic cells of the sessile tissue and the circulation, but do not exhibit phagocytic activity. In contrast to lamellocytes, MGHs are gigantic cells with filamentous projections and contain many nuclei, which are the result of the fusion of several cells. Although the structure of lamellocytes and MGHs differ remarkably, their function in the elimination of parasites is similar, which is potentially the result of the convergent evolution of interactions between hosts and parasites in different geographic regions. MGHs are highly motile and share several features with mammalian multinucleated giant cells, a syncytium of macrophages formed during granulomatous inflammation.
Fly | 2013
Viktor Honti; Gyöngyi Cinege; Gábor Csordás; Éva Kurucz; János Zsámboki; Cory J. Evans; Utpal Banerjee; István Andó
The NimC1 molecule has been described as a phagocytosis receptor, and is being used as a marker for professional phagocytes, the plasmatocytes, in Drosophila melanogaster. In studies including tumor-biology, developmental biology, and cell mediated immunity, monoclonal antibodies (P1a and P1b) to the NimC1 antigen are used. As we observed that these antibodies did not react with plasmatocytes of several strains and genetic combinations, a molecular analysis was performed on the structure of the nimC1 gene. In these strains we found 2 deletions and an insertion within the nimC1 gene, which may result in the production of a truncated NimC1 protein. The NimC1 positivity was regained by recombining the mutation with a wild-type allele or by using nimC1 mutant lines under heterozygous conditions. By means of these procedures or using the recombined stock, NimC1 can be used as a marker for phagocytic cells in the majority of the possible genetic backgrounds.
Central European Journal of Biology | 2013
János Zsámboki; Gábor Csordás; Viktor Honti; Lajos Pintér; Izabella Bajusz; László Galgóczy; István Andó; Éva Kurucz
Engulfment of foreign particles by phagocytes is initiated by the engagement of phagocytic receptors. We have previously reported that NimC1 is involved in the phagocytosis of bacteria in Drosophila melanogaster. We have identified a family of genes, the Nimrod gene superfamily, encoding characteristic NIM domain containing structural homologues of NimC1. In this work we studied the bacterium-binding properties of the Nimrod proteins by using a novel immunofluorescencebased flow cytometric assay. This method proved to be highly reproducible and suitable for investigations of the bacteriumbinding capacities of putative phagocytosis receptors. We found that NimC1, NimA, NimB1 and NimB2 bind bacteria significantly but differently. In this respect they are similar to other NIM domain containing receptors Eater and Draper.
Journal of Immunological Methods | 2013
Beáta Kari; János Zsámboki; Viktor Honti; Gábor Csordás; Robert Markus; István Andó; Éva Kurucz
A new method was established, standardized and validated for screening factors involved in the response to septic injury in Drosophila melanogaster. The method, based on inducing lesion by removing the tarsal segments of the first pair of legs of Drosophila adults and exposing them to different bacteria, imitates injury that often occurs in the natural habitat. The method is easy to perform, highly reproducible and suitable for large-scale genetic screens with the aim of identifying factors involved in host-pathogen interactions. The technique was validated by using mutant variations of different components of the immune response, blood clotting as well as the involvement of a number of genes known to be instrumental in the humoral and cell-mediated immune responses of Drosophila was confirmed. Moreover, the combination of the present method with antibiotic treatment allows the screening of potential antimicrobial drugs in vivo.
Insect Biochemistry and Molecular Biology | 2017
Gyöngyi Cinege; János Zsámboki; Maite Vidal-Quadras; Anne Uv; Gábor Csordás; Viktor Honti; Erika Gábor; Zoltán Hegedűs; Gergely I.B. Varga; Attila L. Kovács; Gábor Juhász; Michael J. Williams; István Andó; Éva Kurucz
The Nimrod gene cluster, located on the second chromosome of Drosophila melanogaster, is the largest synthenic unit of the Drosophila genome. Nimrod genes show blood cell specific expression and code for phagocytosis receptors that play a major role in fruit fly innate immune functions. We previously identified three homologous genes (vajk-1, vajk-2 and vajk-3) located within the Nimrod cluster, which are unrelated to the Nimrod genes, but are homologous to a fourth gene (vajk-4) located outside the cluster. Here we show that, unlike the Nimrod candidates, the Vajk proteins are expressed in cuticular structures of the late embryo and the late pupa, indicating that they contribute to cuticular barrier functions.
Egyptian Journal of Genetics and Cytology | 2016
Ahlam A. Abou Mossallam; Eman R. Mahfouz; Mona A. Bibars; János Zsámboki; Soheir M. El Nahas