Janosch Hennig
Center for Integrated Protein Science Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janosch Hennig.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Janina Pfaff; Janosch Hennig; Franz Herzog; Ruedi Aebersold; Michael Sattler; Dierk Niessing; Gunter Meister
Significance MicroRNAs (miRNAs) are short RNA molecules that negatively regulate the expression of protein-coding genes in many eukaryotes. In order to do so, miRNAs interact with a member of the Argonaute (Ago) protein family and guide it to partially complementary sequences on mRNAs. Ago proteins interact with a member of the GW182 protein family, which, in turn, recruits additional factors and coordinates all downstream steps. In our study, we have characterized Ago–GW182 protein interactions using biochemical and biophysical methods. We define the interaction surfaces on GW182 and Ago proteins and provide a model for the binding mechanism and specificity. MicroRNAs (miRNAs) guide Argonaute (Ago) proteins to target mRNAs, leading to gene silencing. However, Ago proteins are not the actual mediators of gene silencing but interact with a member of the GW182 protein family (also known as GW proteins), which coordinates all downstream steps in gene silencing. GW proteins contain an N-terminal Ago-binding domain that is characterized by multiple GW repeats and a C-terminal silencing domain with several globular domains. Within the Ago-binding domain, Trp residues mediate the direct interaction with the Ago protein. Here, we have characterized the interaction of Ago proteins with GW proteins in molecular detail. Using biochemical and NMR experiments, we show that only a subset of Trp residues engage in Ago interactions. The Trp residues are located in intrinsically disordered regions, where flanking residues mediate additional weak interactions, that might explain the importance of specific tryptophans. Using cross-linking followed by mass spectrometry, we map the GW protein interactions with Ago2, which allows for structural modeling of Ago–GW182 interaction. Our data further indicate that the Ago–GW protein interaction might be a two-step process involving the sequential binding of two tryptophans separated by a spacer with a minimal length of 10 aa.
Nature | 2014
Janosch Hennig; Cristina Militti; Grzegorz M. Popowicz; Iren Wang; Miriam Sonntag; Arie Geerlof; Frank Gabel; Fátima Gebauer; Michael Sattler
Genetic equality between males and females is established by chromosome-wide dosage-compensation mechanisms. In the fruitfly Drosophila melanogaster, the dosage-compensation complex promotes twofold hypertranscription of the single male X-chromosome and is silenced in females by inhibition of the translation of msl2, which codes for the limiting component of the dosage-compensation complex. The female-specific protein Sex-lethal (Sxl) recruits Upstream-of-N-ras (Unr) to the 3′ untranslated region of msl2 messenger RNA, preventing the engagement of the small ribosomal subunit. Here we report the 2.8 Å crystal structure, NMR and small-angle X-ray and neutron scattering data of the ternary Sxl–Unr–msl2 ribonucleoprotein complex featuring unprecedented intertwined interactions of two Sxl RNA recognition motifs, a Unr cold-shock domain and RNA. Cooperative complex formation is associated with a 1,000-fold increase of RNA binding affinity for the Unr cold-shock domain and involves novel ternary interactions, as well as non-canonical RNA contacts by the α1 helix of Sxl RNA recognition motif 1. Our results suggest that repression of dosage compensation, necessary for female viability, is triggered by specific, cooperative molecular interactions that lock a ribonucleoprotein switch to regulate translation. The structure serves as a paradigm for how a combination of general and widespread RNA binding domains expands the code for specific single-stranded RNA recognition in the regulation of gene expression.
Genes & Development | 2014
Inga Loedige; Mathias Stotz; Saadia Qamar; Katharina Kramer; Janosch Hennig; Thomas Schubert; Patrick Löffler; Gernot Längst; Rainer Merkl; Henning Urlaub; Gunter Meister
The Drosophila protein brain tumor (Brat) forms a complex with Pumilio (Pum) and Nanos (Nos) to repress hunchback (hb) mRNA translation at the posterior pole during early embryonic development. It is currently thought that complex formation is initiated by Pum, which directly binds the hb mRNA and subsequently recruits Nos and Brat. Here we report that, in addition to Pum, Brat also directly interacts with the hb mRNA. We identify Brat-binding sites distinct from the Pum consensus motif and show that RNA binding and translational repression by Brat do not require Pum, suggesting so far unrecognized Pum-independent Brat functions. Using various biochemical and biophysical methods, we also demonstrate that the NHL (NCL-1, HT2A, and LIN-41) domain of Brat, a domain previously believed to mediate protein-protein interactions, is a novel, sequence-specific ssRNA-binding domain. The Brat-NHL domain folds into a six-bladed β propeller, and we identify its positively charged top surface as the RNA-binding site. Brat belongs to the functional diverse TRIM (tripartite motif)-NHL protein family. Using structural homology modeling, we predict that the NHL domains of all TRIM-NHL proteins have the potential to bind RNA, indicating that Brat is part of a conserved family of RNA-binding proteins.
Journal of Biomolecular NMR | 2013
Janosch Hennig; Iren Wang; Miriam Sonntag; Frank Gabel; Michael Sattler
Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.
Journal of Biomolecular NMR | 2015
Lee Freiburger; Miriam Sonntag; Janosch Hennig; Jian Li; Peijian Zou; Michael Sattler
NMR studies of multi-domain protein complexes provide unique insight into their molecular interactions and dynamics in solution. For large proteins domain-selective isotope labeling is desired to reduce signal overlap, but available methods require extensive optimization and often give poor ligation yields. We present an optimized strategy for segmental labeling of multi-domain proteins using the S. aureus transpeptidase Sortase A. Critical improvements compared to existing protocols are (1) the efficient removal of cleaved peptide fragments by centrifugal filtration and (2) a strategic design of cleavable and non-cleavable affinity tags for purification. Our approach enables routine production of milligram amounts of purified segmentally labeled protein for NMR and other biophysical studies.
Journal of Biological Chemistry | 2011
Alexander Espinosa; Janosch Hennig; Aurélie Ambrosi; Madhanagopal Anandapadmanaban; Martina Sandberg Abelius; Yi Sheng; Filippa Nyberg; C.H. Arrowsmith; Maria Sunnerhagen; Marie Wahren-Herlenius
Ro52 (TRIM21) is an E3 ligase of the tripartite motif family that negatively regulates proinflammatory cytokine production by ubiquitinating transcription factors of the interferon regulatory factor family. Autoantibodies to Ro52 are present in patients with lupus and Sjögrens syndrome, but it is not known if these autoantibodies affect the function of Ro52. To address this question, the requirements for Ro52 E3 ligase activity were first analyzed in detail. Scanning a panel of E2 ubiquitin-conjugating enzymes, we found that UBE2D1–4 and UBE2E1–2 supported the E3 ligase activity of Ro52 and that the E3 ligase activity of Ro52 was dependent on its RING domain. We also found that the N-terminal extensions in the class III E2 enzymes affected their interaction with Ro52. Although the N-terminal extension in UBE2E3 made this E2 enzyme unable to function together with Ro52, the N-terminal extensions in UBE2E1 and UBE2E2 allowed for a functional interaction with Ro52. Anti-Ro52-positive patient sera and affinity-purified anti-RING domain autoantibodies inhibited the E3 activity of Ro52 in ubiquitination assays. Using NMR, limited proteolysis, ELISA, and Ro52 mutants, we mapped the interactions between Ro52, UBE2E1, and anti-Ro52 autoantibodies. We found that anti-Ro52 autoantibodies inhibited the E3 ligase activity of Ro52 by sterically blocking the E2/E3 interaction between Ro52 and UBE2E1. Our data suggest that anti-Ro52 autoantibodies binding the RING domain of Ro52 may be actively involved in the pathogenesis of rheumatic autoimmune disease by inhibiting Ro52-mediated ubiquitination.
Nucleic Acids Research | 2014
Iren Wang; Janosch Hennig; Pravin Kumar Ankush Jagtap; Miriam Sonntag; Juan Valcárcel; Michael Sattler
Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs.
Journal of Biological Chemistry | 2011
Alexander Espinosa; Janosch Hennig; Aurélie Ambrosi; Madhanagopal Anandapadmanaban; Martina Sandberg; Yi Sheng; Filippa Nyberg; C.H. Arrowsmith; Maria Sunnerhagen; Marie Wahren-Herlenius
Ro52 (TRIM21) is an E3 ligase of the tripartite motif family that negatively regulates proinflammatory cytokine production by ubiquitinating transcription factors of the interferon regulatory factor family. Autoantibodies to Ro52 are present in patients with lupus and Sjögrens syndrome, but it is not known if these autoantibodies affect the function of Ro52. To address this question, the requirements for Ro52 E3 ligase activity were first analyzed in detail. Scanning a panel of E2 ubiquitin-conjugating enzymes, we found that UBE2D1–4 and UBE2E1–2 supported the E3 ligase activity of Ro52 and that the E3 ligase activity of Ro52 was dependent on its RING domain. We also found that the N-terminal extensions in the class III E2 enzymes affected their interaction with Ro52. Although the N-terminal extension in UBE2E3 made this E2 enzyme unable to function together with Ro52, the N-terminal extensions in UBE2E1 and UBE2E2 allowed for a functional interaction with Ro52. Anti-Ro52-positive patient sera and affinity-purified anti-RING domain autoantibodies inhibited the E3 activity of Ro52 in ubiquitination assays. Using NMR, limited proteolysis, ELISA, and Ro52 mutants, we mapped the interactions between Ro52, UBE2E1, and anti-Ro52 autoantibodies. We found that anti-Ro52 autoantibodies inhibited the E3 ligase activity of Ro52 by sterically blocking the E2/E3 interaction between Ro52 and UBE2E1. Our data suggest that anti-Ro52 autoantibodies binding the RING domain of Ro52 may be actively involved in the pathogenesis of rheumatic autoimmune disease by inhibiting Ro52-mediated ubiquitination.
Cell Reports | 2015
Inga Loedige; Leonhard Jakob; Thomas Treiber; Debashish Ray; Mathias Stotz; Nora Treiber; Janosch Hennig; Kate B. Cook; Quaid Morris; Timothy R. Hughes; Julia C. Engelmann; Michael P. Krahn; Gunter Meister
TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.
Protein Science | 2014
Janosch Hennig; Michael Sattler
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X‐ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well‐suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR‐derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state‐of‐the‐art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.