Janus Borner
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janus Borner.
Molecular Phylogenetics and Evolution | 2009
Falko Roeding; Janus Borner; Michael Kube; Sven Klages; Richard Reinhardt; Thorsten Burmester
In recent years, phylogenetic tree reconstructions that rely on multiple gene alignments that had been deduced from expressed sequence tags (ESTs) have become a popular method in molecular systematics. Here, we present a 454 pyrosequencing approach to infer the transcriptome of the Emperor scorpion Pandinus imperator. We obtained 428,844 high-quality reads (mean length=223+/-50 b) from total cDNA, which were assembled into 8334 contigs (mean length 422+/-313 bp) and 26,147 singletons. About 1200 contigs were successfully annotated by BLAST and orthology search. Specific analyses of eight distinct hemocyanin sequences provided further proof for the quality of the 454 reads and the assembly process. The P. imperator sequences were included in a concatenated alignment of 149 orthologous genes of 67 metazoan taxa that covers 39,842 amino acids. After removal of low-quality regions, 11,168 positions were employed for phylogenetic reconstructions. Using Bayesian and maximum likelihood methods, we obtained strongly supported monophyletic Ecdysozoa, Arthropoda (excluding Tardigrada), Euarthropoda, Pancrustacea and Hexapoda. We also recovered the Myriochelata (Chelicerata+Myriapoda). Within the chelicerates, Pycnogonida form the sister group of Euchelicerata. However, Arachnida were found paraphyletic because the Acari (mites and ticks) were recovered as sister group of a clade comprising Xiphosura, Scorpiones and Araneae. In summary, we have shown that 454 pyrosequencing is a cost-effective method that provides sufficient data and coverage depth for gene detection and multigene-based phylogenetic analyses.
Molecular Biology and Evolution | 2014
Emiliano Dell’Ampio; Karen Meusemann; Nikolaus U. Szucsich; Ralph S. Peters; Benjamin Meyer; Janus Borner; Malte Petersen; Andre J. Aberer; Alexandros Stamatakis; Manfred Walzl; Bui Quang Minh; Arndt von Haeseler; Ingo Ebersberger; Günther Pass; Bernhard Misof
Phylogenetic relationships of the primarily wingless insects are still considered unresolved. Even the most comprehensive phylogenomic studies that addressed this question did not yield congruent results. To get a grip on these problems, we here analyzed the sources of incongruence in these phylogenomic studies by using an extended transcriptome data set. Our analyses showed that unevenly distributed missing data can be severely misleading by inflating node support despite the absence of phylogenetic signal. In consequence, only decisive data sets should be used which exclusively comprise data blocks containing all taxa whose relationships are addressed. Additionally, we used Four-cluster Likelihood Mapping (FcLM) to measure the degree of congruence among genes of a data set, as a measure of support alternative to bootstrap. FcLM showed incongruent signal among genes, which in our case is correlated neither with functional class assignment of these genes nor with model misspecification due to unpartitioned analyses. The herein analyzed data set is the currently largest data set covering primarily wingless insects, but failed to elucidate their interordinal phylogenetic relationships. Although this is unsatisfying from a phylogenetic perspective, we try to show that the analyses of structure and signal within phylogenomic data can protect us from biased phylogenetic inferences due to analytical artifacts.
Molecular Phylogenetics and Evolution | 2014
Janus Borner; Peter Rehm; Ralph O. Schill; Ingo Ebersberger; Thorsten Burmester
The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns.
BMC Evolutionary Biology | 2012
Peter Rehm; Christian Pick; Janus Borner; Jürgen Markl; Thorsten Burmester
BackgroundOxygen transport in the hemolymph of many arthropod species is facilitated by large copper-proteins referred to as hemocyanins. Arthropod hemocyanins are hexamers or oligomers of hexamers, which are characterized by a high O2 transport capacity and a high cooperativity, thereby enhancing O2 supply. Hemocyanin subunit sequences had been available from horseshoe crabs (Xiphosura) and various spiders (Araneae), but not from any other chelicerate taxon. To trace the evolution of hemocyanins and the emergence of the large hemocyanin oligomers, hemocyanin cDNA sequences were obtained from representatives of selected chelicerate classes.ResultsHemocyanin subunits from a sea spider, a scorpion, a whip scorpion and a whip spider were sequenced. Hemocyanin has been lost in Opiliones, Pseudoscorpiones, Solifugae and Acari, which may be explained by the evolution of trachea (i.e., taxon Apulmonata). Bayesian phylogenetic analysis was used to reconstruct the evolution of hemocyanin subunits and a relaxed molecular clock approach was applied to date the major events. While the sea spider has a simple hexameric hemocyanin, four distinct subunit types evolved before Xiphosura and Arachnida diverged around 470 Ma ago, suggesting the existence of a 4 × 6mer at that time. Subsequently, independent gene duplication events gave rise to the other distinct subunits in each of the 8 × 6mer hemocyanin of Xiphosura and the 4 × 6mer of Arachnida. The hemocyanin sequences were used to infer the evolutionary history of chelicerates. The phylogenetic trees support a basal position of Pycnogonida, a sister group relationship of Xiphosura and Arachnida, and a sister group relationship of the whip scorpions and the whip spiders.ConclusionFormation of a complex hemocyanin oligomer commenced early in the evolution of euchelicerates. A 4 × 6mer hemocyanin consisting of seven subunit types is conserved in most arachnids since more than 400 Ma, although some entelegyne spiders display selective subunit loss and independent oligomerization. Hemocyanins also turned out to be a good marker to trace chelicerate evolution, which is, however, limited by the loss of hemocyanin in some taxa. The molecular clock calculations were in excellent agreement with the fossil record, also demonstrating the applicability of hemocyanins for such approach.
Molecular Phylogenetics and Evolution | 2014
Peter Rehm; Karen Meusemann; Janus Borner; Bernhard Misof; Thorsten Burmester
Myriapods had been considered closely allied to hexapods (insects and relatives). However, analyses of molecular sequence data have consistently placed Myriapoda either as a sister group of Pancrustacea, comprising crustaceans and hexapods, and thereby supporting the monophyly of Mandibulata, or retrieved Myriapoda as a sister group of Chelicerata (spiders, ticks, mites and allies). In addition, the relationships among the four myriapod groups (Pauropoda, Symphyla, Diplopoda, Chilopoda) are unclear. To resolve the phylogeny of myriapods and their relationship to other main arthropod groups, we collected transcriptome data from the symphylan Symphylella vulgaris, the centipedes Lithobius forficatus and Scolopendra dehaani, and the millipedes Polyxenus lagurus, Glomeris pustulata and Polydesmus angustus by 454 sequencing. We concatenated a multiple sequence alignment that contained 1550 orthologous single copy genes (1,109,847 amino acid positions) from 55 euarthropod and 14 outgroup taxa. The final selected alignment included 181 genes and 37,425 amino acid positions from 55 taxa, with eight myriapods and 33 other euarthropods. Bayesian analyses robustly recovered monophyletic Mandibulata, Pancrustacea and Myriapoda. Most analyses support a sister group relationship of Symphyla in respect to a clade comprising Chilopoda and Diplopoda. Inclusion of additional sequence data from nine myriapod species resulted in an alignment with poor data density, but broader taxon average. With this dataset we inferred Diplopoda+Pauropoda as closest relatives (i.e., Dignatha) and recovered monophyletic Helminthomorpha. Molecular clock calculations suggest an early Cambrian emergence of Myriapoda ∼513 million years ago and a late Cambrian divergence of myriapod classes. This implies a marine origin of the myriapods and independent terrestrialization events during myriapod evolution.
Molecular Phylogenetics and Evolution | 2016
Janus Borner; Christian Pick; Jenny Thiede; Olatunji Matthew Kolawole; Manchang Tanyi Kingsley; Jana Schulze; Veronika M. Cottontail; Nele Wellinghausen; Jonas Schmidt-Chanasit; Iris Bruchhaus; Thorsten Burmester
The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference.
Molecular Microbiology | 2015
Jana Schulze; Marcel Kwiatkowski; Janus Borner; Hartmut Schlüter; Iris Bruchhaus; Thorsten Burmester; Tobias Spielmann; Christian Pick
The pathogenicity of Plasmodium falciparum is partly due to parasite‐induced host cell modifications. These modifications are facilitated by exported P. falciparum proteins, collectively referred to as the exportome. Export of several hundred proteins is mediated by the PEXEL/HT, a protease cleavage site. The PEXEL/HT is usually comprised of five amino acids, of which R at position 1, L at position 3 and E, D or Q at position 5 are conserved and important for export. Non‐canonical PEXEL/HTs with K or H at position 1 and/or I at position 3 are presently considered non‐functional. Here, we show that non‐canonical PEXEL/HT proteins are overrepresented in P. falciparum and other Plasmodium species. Furthermore, we show that non‐canonical PEXEL/HTs can be cleaved and can promote export in both a REX3 and a GBP reporter, but not in a KAHRP reporter, indicating that non‐canonical PEXEL/HTs are functional in concert with a supportive sequence environment. We then selected P. falciparum proteins with a non‐canonical PEXEL/HT and show that some of these proteins are exported and that their export depends on non‐canonical PEXEL/HTs. We conclude that PEXEL/HT plasticity is higher than appreciated and that non‐canonical PEXEL/HT proteins cannot categorically be excluded from Plasmodium exportome predictions.
PLOS ONE | 2012
Gerrit Hartig; Ralph S. Peters; Janus Borner; Claudia Etzbauer; Bernhard Misof; Oliver Niehuis
Background Published nucleotide sequence data from the mega-diverse insect order Hymenoptera (sawflies, bees, wasps, and ants) are taxonomically scattered and still inadequate for reconstructing a well-supported phylogenetic tree for the order. The analysis of comprehensive multiple gene data sets obtained via targeted PCR could provide a cost-effective solution to this problem. However, oligonucleotide primers for PCR amplification of nuclear genes across a wide range of hymenopteran species are still scarce. Findings Here we present a suite of degenerate oligonucleotide primer pairs for PCR amplification of 154 single-copy nuclear protein-coding genes from Hymenoptera. These primers were inferred from genome sequence data from nine Hymenoptera (seven species of ants, the honeybee, and the parasitoid wasp Nasonia vitripennis). We empirically tested a randomly chosen subset of these primer pairs for amplifying target genes from six Hymenoptera, representing the families Chrysididae, Crabronidae, Gasteruptiidae, Leucospidae, Pompilidae, and Stephanidae. Based on our results, we estimate that these primers are suitable for studying a large number of nuclear genes across a wide range of apocritan Hymenoptera (i.e., all hymenopterans with a wasp-waist) and of aculeate Hymenoptera in particular (i.e., apocritan wasps with stingers). Conclusions The amplified nucleotide sequences are (a) with high probability from single-copy genes, (b) easily generated at low financial costs, especially when compared to phylogenomic approaches, (c) easily sequenced by means of an additionally provided set of sequencing primers, and (d) suitable to address a wide range of phylogenetic questions and to aid rapid species identification via barcoding, as many amplicons contain both exonic and fast-evolving intronic nucleotides.
PLOS ONE | 2015
Jessica Tiedke; Janus Borner; Hendrik Beeck; Marcel Kwiatkowski; Hanno Schmidt; Ralf Thiel; Andrej Fabrizius; Thorsten Burmester
Hypoxia has gained ecological importance during the last decades, and it is the most dramatically increasing environmental factor in coastal areas and estuaries. The gills of fish are the prime target of hypoxia and other stresses. Here we have studied the impact of the exposure to hypoxia (1.5 mg O2/l for 48 h) on the protein expression of the gills of two estuarine fish species, the ruffe (Gymnocephalus cernua) and the European flounder (Platichthys flesus). First, we obtained the transcriptomes of mixed tissues (gills, heart and brain) from both species by Illumina next-generation sequencing. Then, the gill proteomes were investigated using two-dimensional gel electrophoresis and mass spectrometry. Quantification of the normalized proteome maps resulted in a total of 148 spots in the ruffe, of which 28 (18.8%) were significantly regulated (> 1.5-fold). In the flounder, 121 spots were found, of which 27 (22.3%) proteins were significantly regulated. The transcriptomes were used for the identification of these proteins, which was successful for 15 proteins of the ruffe and 14 of the flounder. The ruffe transcriptome dataset comprised 87,169,850 reads, resulting in an assembly of 72,108 contigs (N50 = 1,828 bp). 20,860 contigs (26.93%) had blastx hits with E < 1e-5 in the human sequences in the RefSeq database, representing 14,771 unique accession numbers. The flounder transcriptome with 78,943,030 reads assembled into 49,241 contigs (N50 = 2,106 bp). 20,127 contigs (40.87%) had a hit with human proteins, corresponding to 14,455 unique accession numbers. The regulation of selected genes was confirmed by quantitative real-time RT-PCR. Most of the regulated proteins that were identified by this approach function in the energy metabolism, while others are involved in the immune response, cell signalling and the cytoskeleton.
Royal Society Open Science | 2018
Spencer C. Galen; Janus Borner; Ellen S. Martinsen; Juliane Schaer; Christopher C. Austin; Christopher J. West; Susan L. Perkins
The evolutionary relationships among the apicomplexan blood pathogens known as the malaria parasites (order Haemosporida), some of which infect nearly 200 million humans each year, has remained a vexing phylogenetic problem due to limitations in taxon sampling, character sampling and the extreme nucleotide base composition biases that are characteristic of this clade. Previous phylogenetic work on the malaria parasites has often lacked sufficient representation of the broad taxonomic diversity within the Haemosporida or the multi-locus sequence data needed to resolve deep evolutionary relationships, rendering our understanding of haemosporidian life-history evolution and the origin of the human malaria parasites incomplete. Here we present the most comprehensive phylogenetic analysis of the malaria parasites conducted to date, using samples from a broad diversity of vertebrate hosts that includes numerous enigmatic and poorly known haemosporidian lineages in addition to genome-wide multi-locus sequence data. We find that if base composition differences were corrected for during phylogenetic analysis, we recovered a well-supported topology indicating that the evolutionary history of the malaria parasites was characterized by a complex series of transitions in life-history strategies and host usage. Notably we find that Plasmodium, the malaria parasite genus that includes the species of human medical concern, is polyphyletic with the life-history traits characteristic of this genus having evolved in a dynamic manner across the phylogeny. We find support for multiple instances of gain and loss of asexual proliferation in host blood cells and production of haemozoin pigment, two traits that have been used for taxonomic classification as well as considered to be important factors for parasite virulence and used as drug targets. Lastly, our analysis illustrates the need for a widespread reassessment of malaria parasite taxonomy.