Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janusz Dębski is active.

Publication


Featured researches published by Janusz Dębski.


Current Biology | 2011

CENP-C Is a Structural Platform for Kinetochore Assembly

Marcin R. Przewloka; Zsolt Venkei; Victor M. Bolanos-Garcia; Janusz Dębski; Michal Dadlez; David M. Glover

Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. We now find that all kinetochore proteins belonging to the KMN (KNL1/Spc105, the Mis12 complex, and the Ndc80 complex) network bind to the N-terminal part of Drosophila CENP-C. Moreover, we show that the Mis12 complex component Nnf1 interacts directly with CENP-C in vitro. To test whether CENP-Cs N-terminal part was sufficient to recruit KMN proteins, we targeted it to the centrosome by fusing it to a domain of Plk4 kinase. The Mis12 and Ndc80 complexes and Spc105 protein were then all recruited to centrosomes at the expense of centromeres, leading to mitotic abnormalities typical of cells with defective kinetochores. Thus, the N-terminal part of Drosophila CENP-C is sufficient to recruit core kinetochore components and acts as the principal linkage between centromere and kinetochore during mitosis.


Current Biology | 2014

Plk4 Phosphorylates Ana2 to Trigger Sas6 Recruitment and Procentriole Formation

Nikola S. Dzhindzhev; George Tzolovsky; Zoltán Lipinszki; Sandra Schneider; Ramona Lattao; Jingyan Fu; Janusz Dębski; Michal Dadlez; David M. Glover

Summary Centrioles are 9-fold symmetrical structures at the core of centrosomes and base of cilia whose dysfunction has been linked to a wide range of inherited diseases and cancer [1]. Their duplication is regulated by a protein kinase of conserved structure, the C. elegans ZYG-1 or its Polo-like kinase 4 (Plk4) counterpart in other organisms [2–4]. Although Plk4’s centriolar partners and mechanisms that regulate its stability are known, its crucial substrates for centriole duplication have never been identified. Here we show that Drosophila Plk4 phosphorylates four conserved serines in the STAN motif of the core centriole protein Ana2 to enable it to bind and recruit its Sas6 partner. Ana2 and Sas6 normally load onto both mother and daughter centrioles immediately after their disengagement toward the end of mitosis to seed procentriole formation. Nonphosphorylatable Ana2 still localizes to the centriole but can no longer recruit Sas6 and centriole duplication fails. Thus, following centriole disengagement, recruitment of Ana2 and its phosphorylation by Plk4 are the earliest known events in centriole duplication to recruit Sas6 and thereby establish the architecture of the new procentriole engaged with its parent.


Current Biology | 2013

Regulation of Autophosphorylation Controls PLK4 Self-Destruction and Centriole Number

Inês Cunha-Ferreira; Inês Bento; Ana Pimenta-Marques; Swadhin Chandra Jana; Mariana Lince-Faria; Paulo Duarte; Joana Borrego-Pinto; Samuel Gilberto; Tiago Amado; Daniela Brito; Ana Rodrigues-Martins; Janusz Dębski; Nikola S. Dzhindzhev; Mónica Bettencourt-Dias

Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/βTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/βTrCP substrate binding and targeting for degradation is normally regulated by phosphorylation cascades, controlling complex processes, such as circadian clocks and morphogenesis. Here, we show that PLK4 is a suicide kinase, autophosphorylating in residues that are critical for SCF-Slimb/βTrCP binding. We demonstrate a multisite trans-autophosphorylation mechanism, likely to ensure that both a threshold of PLK4 concentration is attained and a sequence of events is observed before PLK4 can autodestruct. First, we show that PLK4 trans-autophosphorylates other PLK4 molecules on both Ser293 and Thr297 within the degron and that these residues contribute differently for PLK4 degradation, the first being critical and the second maximizing auto-destruction. Second, PLK4 trans-autophosphorylates a phospho-cluster outside the degron, which regulates Thr297 phosphorylation, PLK4 degradation, and centriole number. Finally, we show the importance of PLK4-Slimb/βTrCP regulation as it operates in both soma and germline. As βTrCP, PLK4, and centriole number are deregulated in several cancers, our work provides novel links between centriole number control and tumorigenesis.


PLOS Genetics | 2011

Suppression of Scant Identifies Endos as a Substrate of Greatwall Kinase and a Negative Regulator of Protein Phosphatase 2A in Mitosis

Hélène Rangone; Eva Wegel; Melanie K. Gatt; Eirene Yeung; Alexander Flowers; Janusz Dębski; Michal Dadlez; Veerle Janssens; Adelaide T. C. Carpenter; David M. Glover

Protein phosphatase 2A (PP2A) plays a major role in dephosphorylating the targets of the major mitotic kinase Cdk1 at mitotic exit, yet how it is regulated in mitotic progression is poorly understood. Here we show that mutations in either the catalytic or regulatory twins/B55 subunit of PP2A act as enhancers of gwlScant, a gain-of-function allele of the Greatwall kinase gene that leads to embryonic lethality in Drosophila when the maternal dosage of the mitotic kinase Polo is reduced. We also show that heterozygous mutant endos alleles suppress heterozygous gwlScant; many more embryos survive. Furthermore, heterozygous PP2A mutations make females heterozygous for the strong mutation polo11 partially sterile, even in the absence of gwlScant. Heterozygosity for an endos mutation suppresses this PP2A/polo11 sterility. Homozygous mutation or knockdown of endos leads to phenotypes suggestive of defects in maintaining the mitotic state. In accord with the genetic interactions shown by the gwlScant dominant mutant, the mitotic defects of Endos knockdown in cultured cells can be suppressed by knockdown of either the catalytic or the Twins/B55 regulatory subunits of PP2A but not by the other three regulatory B subunits of Drosophila PP2A. Greatwall phosphorylates Endos at a single site, Ser68, and this is essential for Endos function. Together these interactions suggest that Greatwall and Endos act to promote the inactivation of PP2A-Twins/B55 in Drosophila. We discuss the involvement of Polo kinase in such a regulatory loop.


Journal of Neurochemistry | 2010

Effect of chronic mild stress and imipramine on the proteome of the rat dentate gyrus

Sylwia Kedracka-Krok; Ewelina Fic; Urszula Jankowska; Marcin Jaciuk; Piotr Gruca; Mariusz Papp; M. Kusmider; Joanna Solich; Janusz Dębski; Michal Dadlez; Marta Dziedzicka-Wasylewska

J. Neurochem. (2010) 113, 848–859.


Journal of Proteome Research | 2013

Drafting the CLN3 protein interactome in SH-SY5Y human neuroblastoma cells: a label-free quantitative proteomics approach.

Enzo Scifo; Agnieszka Szwajda; Janusz Dębski; Kristiina Uusi-Rauva; Tapio Kesti; Michal Dadlez; Anne-Claude Gingras; Jaana Tyynelä; Marc Baumann; Anu Jalanko; Maciej Lalowski

Neuronal ceroid lipofuscinoses (NCL) are the most common inherited progressive encephalopathies of childhood. One of the most prevalent forms of NCL, Juvenile neuronal ceroid lipofuscinosis (JNCL) or CLN3 disease (OMIM: 204200), is caused by mutations in the CLN3 gene on chromosome 16p12.1. Despite progress in the NCL field, the primary function of ceroid-lipofuscinosis neuronal protein 3 (CLN3) remains elusive. In this study, we aimed to clarify the role of human CLN3 in the brain by identifying CLN3-associated proteins using a Tandem Affinity Purification coupled to Mass Spectrometry (TAP-MS) strategy combined with Significance Analysis of Interactome (SAINT). Human SH-SY5Y-NTAP-CLN3 stable cells were used to isolate native protein complexes for subsequent TAP-MS. Bioinformatic analyses of isolated complexes yielded 58 CLN3 interacting partners (IP) including 42 novel CLN3 IP, as well as 16 CLN3 high confidence interacting partners (HCIP) previously identified in another high-throughput study by Behrends et al., 2010. Moreover, 31 IP of ceroid-lipofuscinosis neuronal protein 5 (CLN5) were identified (18 of which were in common with the CLN3 bait). Our findings support previously suggested involvement of CLN3 in transmembrane transport, lipid homeostasis and neuronal excitability, as well as link it to G-protein signaling and protein folding/sorting in the ER.


PLOS ONE | 2009

Peroxiredoxin 6 fails to limit phospholipid peroxidation in lung from Cftr-knockout mice subjected to oxidative challenge.

Stéphanie Trudel; Mairead Kelly; Janine Fritsch; Thao Nguyen-Khoa; Patrice Thérond; Martine Couturier; Michal Dadlez; Janusz Dębski; Lhousseine Touqui; Benoit Vallée; Mario Ollero; Aleksander Edelman; Franck Brouillard

Oxidative stress plays a prominent role in the pathophysiology of cystic fibrosis (CF). Despite the presence of oxidative stress markers and a decreased antioxidant capacity in CF airway lining fluid, few studies have focused on the oxidant/antioxidant balance in CF cells. The aim of the current study was to investigate the cellular levels of reactive oxygen species (ROS), oxidative damage and enzymatic antioxidant defenses in the lung of Cftr-knockout mice in basal conditions and as a response to oxidative insult. The results show that endogenous ROS and lipid peroxidation levels are higher in Cftr −/− lung when compared to wild-type (Cftr +/+) in basal conditions, despite a strong enzymatic antioxidant response involving superoxide dismutases, glutathione peroxidases and peroxiredoxin 6 (Prdx6). The latter has the unique capacity to directly reduce membrane phospholipid hydroperoxides (PL-OOH). A dramatic increase in PL-OOH levels in Cftr −/− lung consecutive to in vivo oxidative challenge by paraquat (PQ) unmasks a susceptibility to phospholipid peroxidation. PQ strongly decreases Prdx6 expression in Cftr −/− mice compared to Cftr +/+. Similar results were obtained after P. aeruginosa LPS challenge. Two-dimensional gel analysis of Prdx6 revealed one main molecular form in basal conditions and a PQ-induced form only detected in Cftr +/+ lung. Mass spectrometry experiments suggested that, as opposed to the main basal form, the one induced by PQ is devoid of overoxidized catalytic Cys47 and could correspond to a fully active form that is not induced in Cftr −/− lung. These results highlight a constitutive redox imbalance and a vulnerability to oxidative insult in Cftr −/− lung and present Prdx6 as a key component in CF antioxidant failure. This impaired PL-OOH detoxification mechanism may enhance oxidative damage and stress-related signaling, contributing to an exaggerated inflammatory response in CF lung.


Journal of Proteomics | 2015

Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells

Enzo Scifo; Agnieszka Szwajda; Rabah Soliymani; Francesco Pezzini; Marzia Bianchi; Arvydas Dapkunas; Janusz Dębski; Kristiina Uusi-Rauva; Michal Dadlez; Anne-Claude Gingras; Jaana Tyynelä; Alessandro Simonati; Anu Jalanko; Marc Baumann; Maciej Lalowski

UNLABELLED Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, characterized by early accumulation of autofluorescent storage material in lysosomes of neurons or other cells. Clinical symptoms of NCL include: progressive loss of vision, mental and motor deterioration, epileptic seizures and premature death. CLN1 disease (MIM#256730) is caused by mutations in the CLN1 gene, which encodes palmitoyl protein thioesterase 1 (PPT1). In this study, we utilised single step affinity purification coupled to mass spectrometry (AP-MS) to unravel the in vivo substrates of human PPT1 in the brain neuronal cells. Protein complexes were isolated from human PPT1 expressing SH-SY5Y stable cells, subjected to filter-aided sample preparation (FASP) and analysed on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. A total of 23 PPT1 interacting partners (IP) were identified from label free quantitation of the MS data by SAINT platform. Three of the identified PPT1 IP, namely CRMP1, DBH, and MAP1B are predicted to be palmitoylated. Our proteomic analysis confirmed previously suggested roles of PPT1 in axon guidance and lipid metabolism, yet implicates the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway. BIOLOGICAL SIGNIFICANCE The significance of this work lies in the unravelling of putative in vivo substrates of human CLN1 or PPT1 in brain neuronal cells. Moreover, the PPT1 IP implicate the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway.


Journal of Molecular Biology | 2015

The Pentameric Nucleoplasmin Fold Is Present in Drosophila FKBP39 and a Large Number of Chromatin-Related Proteins

Christian Edlich-Muth; Jean-Baptiste Artero; Phil Callow; Marcin R. Przewloka; Aleksandra A. Watson; Wei Zhang; David M. Glover; Janusz Dębski; Michal Dadlez; Adam Round; V. Trevor Forsyth; Ernest D. Laue

Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals.


Open Biology | 2016

Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis.

Callum McKenzie; Zuni I. Bassi; Janusz Dębski; Marco Gottardo; Giuliano Callaini; Michal Dadlez; Pier Paolo D'Avino

Cytokinesis culminates in the final separation, or abscission, of the two daughter cells at the end of cell division. Abscission relies on an organelle, the midbody, which forms at the intercellular bridge and is composed of various proteins arranged in a precise stereotypic pattern. The molecular mechanisms controlling midbody organization and function, however, are obscure. Here we show that proper midbody architecture requires cross-regulation between two cell division kinases, Citron kinase (CIT-K) and Aurora B, the kinase component of the chromosomal passenger complex (CPC). CIT-K interacts directly with three CPC components and is required for proper midbody architecture and the orderly arrangement of midbody proteins, including the CPC. In addition, we show that CIT-K promotes Aurora B activity through phosphorylation of the INCENP CPC subunit at the TSS motif. In turn, Aurora B controls CIT-K localization and association with its central spindle partners through phosphorylation of CIT-Ks coiled coil domain. Our results identify, for the first time, a cross-regulatory mechanism between two kinases during cytokinesis, which is crucial for establishing the stereotyped organization of midbody proteins.

Collaboration


Dive into the Janusz Dębski's collaboration.

Top Co-Authors

Avatar

Michal Dadlez

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anu Jalanko

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Enzo Scifo

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristiina Uusi-Rauva

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krystyna Grzelak

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge