Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janusz Gregoliński is active.

Publication


Featured researches published by Janusz Gregoliński.


Journal of the American Chemical Society | 2008

Helical lanthanide(III) complexes with chiral nonaaza macrocycle.

Janusz Gregoliński; Przemysław Starynowicz; KimNgan T. Hua; Jamie L. Lunkley; Gilles Muller; Jerzy Lisowski

The chiral nonaazamacrocyclic amine L, which is a reduction product of the 3 + 3 Schiff base macrocycle, wraps around the lanthanide(III) ions to form enantiopure helical complexes. These Ce(III), Pr(III), Nd(III), Eu(III), Gd(III), Tb(III), Er(III), Yb(III) and Lu(III) complexes have been isolated in enantiopure form and have been characterized by spectroscopic methods. X-ray crystal structures of the Ln(III) complexes with L show that the thermodynamic product of the complexation of the RRRRRR-isomer of the macrocycle is the (M)-helical complex in the case of Ce(III), Pr(III), Nd(III) and Eu(III). In contrast, the (P)-helical complex is the thermodynamic product in the case of Yb(III) and Lu(III). The NMR and CD spectra show that the (M)-helicity for the kinetic complexation product of the RRRRRR-isomer of the macrocycle is preferred for all investigated lanthanide(III) ions, while the preferred helicity of the thermodynamic product is (M) for the early lanthanide(III) ions and (P) for the late lanthanide(III) ions. In the case of the late lanthanide(III) ions, a slow inversion of helicity between the kinetic (M)-helical product and the thermodynamic (P)-helical product is observed in solution. For Er(III), Yb(III) and Lu(III) both forms have been isolated in pure form and characterized by NMR and CD. The analysis of 2D NMR spectra of the Lu(III) complex reveals the NOE correlations that prove that the helical structure is retained in solution. The NMR spectra also reveal large isotopic effect on the 1H NMR shifts of paramagnetic Ln(III) complexes, related to NH/ND exchange. Photophysical measurements show that L(RRRRRR) appears to favor an efficient 3pipi*-to-Ln energy transfer process taking place for Eu(III) and Tb(III), but these Eu(III)- and Tb(III)-containing complexes with L(RRRRRR) lead to small luminescent quantum yields due to an incomplete intersystem crossing (isc) transfer, a weak efficiency of the luminescence sensitization by the ligand, and/or efficient nonradiative deactivation processes. Circularly polarized luminescence on the MeOH solutions of Eu(III) and Tb(III) complexes confirms the presence of stable chiral emitting species and the observation of almost perfect mirror-image CPL spectra for these compounds with both enantiomeric forms of L.


Nucleic Acids Research | 2012

Contrasting enantioselective DNA preference: chiral helical macrocyclic lanthanide complex binding to DNA

Chuanqi Zhao; Jinsong Ren; Janusz Gregoliński; Jerzy Lisowski; Xiaogang Qu

There is great interest in design and synthesis of small molecules which selectively target specific genes to inhibit biological functions in which particular DNA structures participate. Among these studies, chiral recognition has been received much attention because more evidences have shown that conversions of the chirality and diverse conformations of DNA are involved in a series of important life events. Here, we report that a pair of chiral helical macrocyclic lanthanide (III) complexes, (M)-Yb[LSSSSSS]3+ and (P)-Yb[LRRRRRR]3+, can enantioselectively bind to B-form DNA and show remarkably contrasting effects on GC-rich and AT-rich DNA. Neither of them can influence non-B-form DNA, nor quadruplex DNA stability. Our results clearly show that P-enantiomer stabilizes both poly(dG-dC)2 and poly(dA-dT)2 while M-enantiomer stabilizes poly(dA-dT)2, however, destabilizes poly(dG-dC)2. To our knowledge, this is the best example of chiral metal compounds with such contrasting preference on GC- and AT-DNA. Ligand selectively stabilizing or destabilizing DNA can interfere with protein–DNA interactions and potentially affect many crucial biological processes, such as DNA replication, transcription and repair. As such, bearing these unique capabilities, the chiral compounds reported here may shed light on the design of novel enantiomers targeting specific DNA with both sequence and conformation preference.


Organic and Biomolecular Chemistry | 2005

New 2+2, 3+3 and 4+4 macrocycles derived from 1,2-diaminocyclohexane and 2,6-diformylpyridine

Janusz Gregoliński; Jerzy Lisowski; Tadeusz Lis

Two new Schiff base macrocycles - a 4+4 condensation product and a meso-type 2+2 condensation product - were obtained in a reaction of trans-1,2-diaminocyclohexane and 2,6-diformylpyridine. Reduction of these compounds led to the corresponding 4+4 and 2+2 macrocyclic amines. The macrocycles were characterised by NMR spectroscopy and electrospray mass spectrometry. The symmetry and stereochemistry of these macrocycles, as well as of new 3+3 and 4+4 diastereomers identified in solution, has been established. X-Ray structures of the 2+2 and 4+4 Schiff base macrocycles confirm the configurations determined on the basis of spectroscopic investigations. The crystal structures reveal that the centres of the square-shaped 4+4 macrocycles form channels as a result of columnar stacking.


Inorganic Chemistry | 2008

Lanthanide Complexes of the Heterochiral Nonaaza Macrocycle: Switching the Orientation of the Helix Axis

Janusz Gregoliński; Tadeusz Lis; Marta Cyganik; Jerzy Lisowski

The La(III), Ce(III), Pr(III), Nd(III), Sm(III), and Eu(III) complexes of the racemic heterochiral nonaaza macrocyclic amine L have been synthesized and characterized by spectroscopic methods. The X-ray crystal structures of the [PrL][Pr(NO(3))(6)].CH(3)OH and the isomorphic [NdL][Nd(NO(3))(6)].CH(3)OH complexes show that all nine nitrogen atoms of the macrocycle coordinate to the Ln(3+) ion, completing its coordination sphere. The macrocycle wraps tightly around the metal ion in double-helical fashion. The structures reveal the RRRRSS/SSSSRR configuration at the stereogenic carbon atoms of the three cyclohexane rings, confirming the heterochiral nature of the parent 3 + 3 macrocycle obtained in the condensation of racemic trans-1,2-diaminocyclohexane and 2,6-diformylpyridine. The NMR spectra of the isolated complexes indicate the presence of low C(1) symmetry [LnL](3+) complexes. The same symmetry is indicated by the X-ray crystal structures of Pr(III) and Nd(III) complexes, which show that for the RRRRSS enantiomer of the macrocycle L, the helix axis passes through the cyclohexane ring of RR chirality and the opposite pyridine ring. The NMR studies of complex formation in solution by the paramagnetic Pr(3+) and Eu(3+) ions indicate that the initially formed [LnL](3+) complexes are of C(2) symmetry. For the RRRRSS enantiomer of the macrocycle L in the C(2)-symmetric species, the helix axis passes through the cyclohexane ring of SS chirality and the opposite pyridine ring. The C(1)-symmetric and C(2)-symmetric forms of the [LnL](3+) complexes constitute a new kind of isomers and the conversion of the kinetic complexation product of C(2) symmetry into the thermodynamic product of C(1) symmetry corresponds to an unprecedented switching of the orientation of the helix axis within the macrocycle framework.


Organic Letters | 2014

Expansion of a 2 + 2 macrocycle into a 6 + 6 macrocycle: template effect of cadmium(II).

Janusz Gregoliński; Katarzyna Ślepokura; Tomasz Paćkowski; Jerzy Lisowski

The reaction of trans-1,2-diaminocyclopentane with 2,6-diformylpyridine results in formation of 2 + 2, 3 + 3, and 4 + 4 Schiff base macrocycles as well as trace amounts of 6 + 6 and 8 + 8 macrocycles. In contrast, the 6 + 6 Schiff base macrocycle is a dominant product of the reaction of the isolated 2 + 2 macrocycle with excess of cadmium(II) chloride. The X-ray crystal structure of the protonated amine derivative of the 6 + 6 macrocycle reveals an unusual container-like conformation with the S6 axis.


Angewandte Chemie | 2016

Octulene: A Hyperbolic Molecular Belt that Binds Chloride Anions

Marcin A. Majewski; Yongseok Hong; Tadeusz Lis; Janusz Gregoliński; Piotr J. Chmielewski; Joanna Cybińska; Dongho Kim; Marcin Stępień

Octulene, the higher homologue of kekulene and septulene, was synthesized using the fold-in method. This new hydrocarbon macrocycle contains a large 24-membered inner circuit, which is peripherally fused to 24 benzene rings. Such an arrangement produces considerable hyperbolic distortion of the π-conjugated surface. The consequences of distortion in octulene were explored using photophysical methods, which revealed a reduced electronic band gap and greater flexibility of the π system. Octulene contains a functional cavity with a diameter larger than 5.5 Å that is capable of efficiently binding the chloride anion in a nonpolar solvent (Ka = 2.2(4)×104  m-1 , 1 % dichloromethane (DCM) in benzene). The octulene-chloride interaction is stabilized by eight weak C(sp2 )H⋅⋅⋅Cl bonds, providing the first example of a hydrocarbon-based anion receptor.


Journal of Organic Chemistry | 2016

From 2 + 2 to 8 + 8 Condensation Products of Diamine and Dialdehyde: Giant Container-Shaped Macrocycles for Multiple Anion Binding.

Janusz Gregoliński; Katarzyna Ślepokura; Tomasz Paćkowski; Jarosław J. Panek; Piotr Stefanowicz; Jerzy Lisowski

The combination of 2,6-diformylpyridine and trans-1,2-diaminocyclopentane fragments results in 2 + 2, 3 + 3, 4 + 4, 6 + 6, and 8 + 8 macrocyclic imine condensation products. These imines can be reduced to the corresponding 2 + 2, 3 + 3, 4 + 4, 6 + 6, and 8 + 8 macrocyclic amines. The X-ray crystal structures of their protonated derivatives show a rich variety of macrocycle conformations ranging from a stepped 2 + 2 macrocycle to a multiply folded 8 + 8 macrocycle of globular shape. These compounds bind anions via hydrogen bonds: two chloride anions are bound above and below the macrocyclic ring of the 2 + 2 amine, one chloride anion is bound approximately in the center of the 3 + 3 macrocycle, and two chloride anions are deeply buried inside a folded container-shaped 4 + 4 macrocycle, while in the case of the previously reported 6 + 6 amine four chloride anions and two solvent molecules are buried inside a container-shaped macrocycle. Yet another situation was observed for a multiply folded protonated 8 + 8 macrocycle which binds six sulfate anions; two of them are deeply buried inside the container structure while four anions interact with the clefts at the surface of the container.


Journal of Organic Chemistry | 2015

Stereoselective Wittig Olefination as a Macrocyclization Tool. Synthesis of Large Carbazolophanes

Damian Myśliwiec; Tadeusz Lis; Janusz Gregoliński; Marcin Stępień

Z-Selective Wittig olefination was applied to the synthesis of large carbazolophanes containing up to eight heteroaromatic subunits. A number of strategies were devised and tested, showing that cyclooligomerization yields can be significantly improved by using one-component schemes involving heterobifunctional reactants. [4]- and [6]Carbazolophanes were characterized in the solid state, revealing compact, highly folded structures. Electronic and steric effects of substitution and chain length on the Wittig olefination rates and Z-selectivities were explored theoretically using DFT calculations.


Dalton Transactions | 2016

Multinuclear Ni(II), Cu(II) and Zn(II) complexes of chiral macrocyclic nonaazamine

Marta Löffler; Janusz Gregoliński; Maria Korabik; Tadeusz Lis; Jerzy Lisowski

The chiral macrocyclic amines R-L and S-L derived from the 3 + 3 condensation of 2,6-diformylpyridine and (1R,2R)-1,2-diaminocyclohexane or (1S,2S)-1,2-diaminocyclohexane form enantiopure trinuclear Ni(ii) and Cu(ii) complexes [Ni3(L)(H2O)2Cl5]Cl and [Cu3(L)Cl4]Cl2 and form the dinuclear complex [Zn2(L)Cl2](ZnCl4) with Zn(ii). The X-ray crystal structures of these complexes indicate remarkably different conformations of the ligand and different binding modes of the chloride anions. The structure of the copper(ii) derivative [Cu3(R-L)Cl4]Cl2·CH3CN·7.5(H2O) indicates unsymmetrical conformation of the macrocycle with three dissimilar pentacoordinate copper(ii) ions bridged by chloride; the structure of [Ni3(R-L)(H2O)2Cl5]Cl·0.4CH3CN·4.2H2O is somewhat more symmetrical, with three Ni(ii) ions of distorted octahedral geometry, also bridged by a common chloride anion. On the other hand, the macrocycle is highly folded in [Zn2(R-L)Cl2](ZnCl4)·CHCl3·0.8CH3OH·3.7H2O, forming a cleft where the third Zn(ii) ion is held via electrostatic interactions as the ZnCl42- anion. The magnetic data for [Cu3(R-L)Cl4]Cl2 indicate the coexistence of antiferromagnetic and ferromagnetic interactions within the quasi isosceles tricopper(ii) core (J = -85.6 cm-1, j = 77.1 cm-1). Compound [Ni3(R-L)(H2O)2Cl5]Cl shows the presence of weak antiferromagnetic coupling (J = -2.56 cm-1, j = -1.54 cm-1) between the three Ni(ii) ions.


Inorganic Chemistry | 2017

Hexanuclear and Trinuclear Metal Complexes of a Giant Octadecaaza Macrocycle

Janusz Gregoliński; Katarzyna Ślepokura; Jerzy Lisowski

A large macrocyclic ligand containing six pyridine fragments and six diaminocyclopentane fragments is able to form hexanuclear Zn(II) and Ni(II) complexes as well as a trinuclear Zn(II) complex. X-ray crystal structures of these complexes indicate quite different ligand conformations. In the hexanuclear Zn(II) derivative with chloride counteranions metal ions have a distorted-trigonal-bipyramidal geometry and occupy loop sections formed by the highly folded macrocycle, which adopts a globular shape. In the hexanuclear Ni(II) derivative with nitrate counteranions metal ions exhibit a distorted-octahedral geometry and the ligand conformation is much more open, while in the trinuclear Zn(II) complex the macrocycle wraps around the octahedral metal ions. The last highly entangled conformation of the trinuclear complex is also present in solution, as confirmed by the NOESY spectra. The NMR data indicate that the hexanuclear Zn(II) complex partially dissociates in water solutions to form the trinuclear complex, while the 1H NMR titration of the free macrocycle with zinc(II) chloride indicates that the formation of a trinuclear complex corresponds to cooperative binding of metal ions.

Collaboration


Dive into the Janusz Gregoliński's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadeusz Lis

University of Wrocław

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge