Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janusz Rak is active.

Publication


Featured researches published by Janusz Rak.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A role for survivin in chemoresistance of endothelial cells mediated by VEGF.

Jennifer Tran; Zubin Master; Joanne L. Yu; Janusz Rak; Daniel J. Dumont; Robert S. Kerbel

Although standard anticancer chemotherapeutic drugs have been designed to inhibit the survival or growth of rapidly dividing tumor cells, it is possible to enhance the efficacy of such drugs by targeting the proliferating host endothelial cells (ECs) of the tumor vasculature. A theoretical advantage of this strategy lies in the possibility of circumventing, or significantly delaying, acquired drug resistance driven by the genetic instability of tumor cells. Here, we show that both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor significantly reduce the pro-apoptotic potency of chemotherapy on both micro- and macrovascular ECs. This cytoprotection to drug toxicity was found to be phosphatidylinositol 3-kinase-dependent and could be recapitulated in the absence of VEGF by overexpressing the dominant-active form of the serine/threonine kinase protein kinase B/Akt. Downstream of phosphatidylinositol 3-kinase, we also show that survivin plays a pivotal role in VEGF-mediated EC protection by preserving the microtubule network. In this respect, its induction effectively protects ECs against chemotherapeutic damage, whereas overexpression of its dominant-interfering mutant (C84A) abrogates the protective effects of VEGF. Accordingly, the potency of VEGF as a chemoprotectant was more pronounced with drugs that interfere with microtubule dynamics than those that damage DNA. These studies implicate a role for survivin up-regulation as a novel mechanism of EC drug “resistance” and support the notion that angiogenic factors that induce the expression of survivin may act to shield tumor ECs from the apoptotic effects of chemotherapy. Thus, exploiting chemotherapeutic drugs as antiangiogenics is likely to be compromised by the high concentrations of proangiogenic survival/growth factors present in the tumor microenvironment; targeting EC survival pathways should improve the antiangiogenic efficacy of antineoplastic agents, particularly microtubule-inhibitor drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR

Khalid Al-Nedawi; Brian Meehan; Robert S. Kerbel; Anthony C. Allison; Janusz Rak

Activated EGF receptor (EGFR) plays an oncogenic role in several human malignancies. Although the intracellular effects of EGFR are well studied, its ability to induce and modulate tumor angiogenesis is less understood. We found previously that oncogenic EGFR can be shed from cancer cells as cargo of membrane microvesicles (MVs), which can interact with surfaces of other cells. Here we report that MVs produced by human cancer cells harboring activated EGFR (A431, A549, DLD-1) can be taken up by cultured endothelial cells, in which they elicit EGFR-dependent responses, including activation of MAPK and Akt pathways. These responses can be blocked by annexin V and its homodimer, Diannexin, both of which cloak phosphatidylserine residues on the surfaces of MVs. Interestingly, the intercellular EGFR transfer is also accompanied by the onset of VEGF expression in endothelial cells and by autocrine activation of its key signaling receptor (VEGF receptor-2). In A431 human tumor xenografts in mice, angiogenic endothelial cells stain positively for human EGFR and phospho-EGFR, while treatment with Diannexin leads to a reduction of tumor growth rate and microvascular density. Thus, we propose that oncogene-containing tumor cell-derived MVs could act as a unique form of angiogenesis-modulating stimuli and are capable of switching endothelial cells to act in an autocrine mode.


Seminars in Immunopathology | 2011

Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular ‘debris’

Tae Hoon Lee; Esterina D’Asti; Nathalie Magnus; Khalid Al-Nedawi; Brian Meehan; Janusz Rak

Cancer cells emit a heterogeneous mixture of vesicular, organelle-like structures (microvesicles, MVs) into their surroundings including blood and body fluids. MVs are generated via diverse biological mechanisms triggered by pathways involved in oncogenic transformation, microenvironmental stimulation, cellular activation, stress, or death. Vesiculation events occur either at the plasma membrane (ectosomes, shed vesicles) or within endosomal structures (exosomes). MVs are increasingly recognized as mediators of intercellular communication due to their capacity to merge with and transfer a repertoire of bioactive molecular content (cargo) to recipient cells. Such processes may occur both locally and systemically, contributing to the formation of microenvironmental fields and niches. The bioactive cargo of MVs may include growth factors and their receptors, proteases, adhesion molecules, signalling molecules, as well as DNA, mRNA, and microRNA (miRs) sequences. Tumour cells emit large quantities of MVs containing procoagulant, growth regulatory and oncogenic cargo (oncosomes), which can be transferred throughout the cancer cell population and to non-transformed stromal cells, endothelial cells and possibly to the inflammatory infiltrates (oncogenic field effect). These events likely impact tumour invasion, angiogenesis, metastasis, drug resistance, and cancer stem cell hierarchy. Ongoing studies explore the molecular mechanisms and mediators of MV-based intercellular communication (cancer vesiculome) with the hope of using this information as a possible source of therapeutic targets and disease biomarkers in cancer.


Cell Cycle | 2009

Microvesicles: messengers and mediators of tumor progression.

Khalid Al-Nedawi; Brian Meehan; Janusz Rak

Cellular interactions play a crucial role in progression, angiogenesis and invasiveness of tumors, including glioma. The traditionally accepted view is that medium and long-range cellular communications occur primarily through gradients of soluble ligands, recognizable by the cell-associated receptors. Recent findings, however, suggest the existence of another mode of intercellular communication, where the ‘units’ of information are microvesicles containing a multitude of biologically active protein and RNA species, including oncogenic receptors, such as EGFRvIII. Moreover, microvesicles can be retrieved from the circulating blood of cancer patients, and reveal the presence of oncogenes in their tumors, thereby potentially serving as information-rich prognostic and predictive biomarkers.


Cancer and Metastasis Reviews | 1995

Oncogenes as inducers of tumor angiogenesis

Janusz Rak; J. Filmus; G. Finkenzeller; S. Grugel; D. Marmé; Robert S. Kerbel

SummaryDominantly acting transforming oncogenes are generally considered to contribute to tumor development and progression by their direct effects on tumor cell proliferation and differentiation. However, the growth of solid tumors beyond 1–2 mm in diameter requires the induction and maintenance of a tumor blood vessel supply, which is attributed in large part to the production of angiogenesis promoting growth factors by tumor cells. The mechanisms which govern the expression of angiogenesis growth factors in tumor cells are largely unknown, but dominantly acting oncogenes may have a much greater impact than hitherto realized. An example of this is the induction of expression of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by mutant H- or K-ras oncogenes, as well as v-src and v-raf, in transformed fibroblasts or epithelial cells. Besides VEGF/VPF, mutantras genes are known to upregulate the expression of a variety of other growth factors thought to have direct or indirect stimulating effects on angiogenesis, e.g. TGF-β and TGF-α. This effect may be mediated through the ras-raf-MAP kinase signal transduction pathway, resulting in activation of transcription factors such as AP1, which can then bind to relevant sites in the promoter regions of genes encoding angiogenesis growth factors. In principle, similar events could take place after activation or overexpression of many other oncogenes, especially those which can mediate their function through rasdependent signal transduction pathways. The regulatory effect of oncogenes on mediators of angiogenesis has some potentially important therapeutic consequences. For example, it strengthens the rationale of pharmacologically targeting oncogene products, such as mutant RAS proteins, as an anti-tumor therapeutic strategy. Such drugs may attack the source of one or more angiogenic growth factors and by doing so, function, at least in part, as anti-angiogenic agents in vivo.


Cancer and Metastasis Reviews | 2001

Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches.

Robert S. Kerbel; Joanne Yu; Jennifer Tran; Shan Man; Alicia Viloria-Petit; Giannoula Klement; Brenda L. Coomber; Janusz Rak

The ultimate target of anti-angiogenic drugs is the genetically stable, activated endothelial cell of a newly forming tumor blood vessel, rather than the genetically unstable tumor cell population per se. This led to the notion that acquired resistance to such drugs may not develop as readily, if at all. While there is some evidence that this lack of resistance development may be the case for some direct-acting angiogenesis inhibitors, it is becoming apparent that resistance can develop over time to many types of angiogenesis inhibitors including, possibly, some direct inhibitors, especially when used as monotherapies. Possible mechanisms for such acquired or induced resistance include: (i) redundancy of pro-angiogenic growth factors when the drug used targets a single such growth factor or its cognate endothelial cell-associated receptor tyrosine kinase; (ii) the anti-apoptotic/pro-survival function of growth factors such as VEGF, which, in high local concentrations, can antagonize the pro-apoptotic effects of various angiogenesis inhibitors; (iii) epigenetic, transient upregulation, or induction, of various anti-apoptotic effector molecules in host-endothelial cells; and (iv) heterogeneous vascular dependence of tumor cell populations. It is suggested that long-term disease control with anti-angiogenic drugs can be best achieved by judicious combination therapy. In this regard, the great molecular diversity of anti-angiogenic drug targets, in contrast to chemotherapy, makes this a particularly attractive therapeutic option, especially when approved, commercially available drugs considered to have anti-angiogenic effects are used in such combination treatment strategies.


Cancer Cell | 2013

Endothelial Cells Promote the Colorectal Cancer Stem Cell Phenotype through a Soluble Form of Jagged-1

Jia Lu; Xiangcang Ye; Fan Fan; Ling Xia; Rajat Bhattacharya; Seth Bellister; Federico Tozzi; Eric Sceusi; Yunfei Zhou; Isamu Tachibana; Dipen M. Maru; David H. Hawke; Janusz Rak; Sendurai A. Mani; Patrick A. Zweidler-McKay; Lee M. Ellis

We report a paracrine effect whereby endothelial cells (ECs) promote the cancer stem cell (CSC) phenotype of human colorectal cancer (CRC) cells. We showed that, without direct cell-cell contact, ECs secrete factors that promoted the CSC phenotype in CRC cells via Notch activation. In human CRC specimens, CD133 and Notch intracellular domain-positive CRC cells colocalized in perivascular regions. An EC-derived, soluble form of Jagged-1, via ADAM17 proteolytic activity, led to Notch activation in CRC cells in a paracrine manner; these effects were blocked by immunodepletion of Jagged-1 in EC-conditioned medium or blockade of ADAM17 activity. Collectively, ECs play an active role in promoting Notch signaling and the CSC phenotype by secreting soluble Jagged-1.


Seminars in Thrombosis and Hemostasis | 2010

Microparticles in Cancer

Janusz Rak

Microparticles (MP) are vesicular structures released from cells upon activation, malignant transformation, stress, or death. MP may be derived from the plasma membrane (shed microvesicles), produced by endosomal pathway (exosomes), or arise from membrane blebs of apoptotic cells. The terms microparticles or microvesicles (MV) are often used as general and interchangeable descriptors of all cellular vesicles, but a more rigorous terminology is still to be established. The cargo of MP/MV consists of proteins, lipids, and nucleic acids (DNA, mRNA, microRNA), all of which may be transferred horizontally between cells. In cancer, oncogenic pathways drive production of MP/MV, and oncoproteins may be incorporated into the cargo of MV (oncosomes). Oncogenic pathways may also stimulate production of MP/MV harboring tissue factor and involved in cancer coagulopathy. In addition, the cargo of MV may include several receptors, antigens, bioactive molecules, and other species capable of stimulating tumor progression, immunotolerance, invasion, angiogenesis, and metastasis. MP emanate not only from tumor cells but also from platelets, endothelium, and inflammatory cells. Indeed, circulating MP/MV harbor molecular information related to cancer-related processes and may serve as a reservoir of prognostic and predictive biomarkers to monitor genetic tumor progression, angiogenesis, thrombosis, and responses to targeted therapeutics.


Oncogene | 2000

Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner

Omar López-Ocejo; Alicia Viloria-Petit; Mónica Bequet-Romero; Debabrata Mukhopadhyay; Janusz Rak; Robert S. Kerbel

Like other types of pre-malignant lesions and carcinoma, angiogenesis is associated with high-grade cervical dysplasia and with invasive squamous carcinoma of the cervix. Vascular endothelial cell growth factor (VEGF) is known to be one of the most important inducers of angiogenesis and is upregulated in carcinoma of the cervix. Human Papilloma Virus 16 (HPV-16) has been etiologically linked to human cervical cancer, and the major oncogenic proteins encoded by the viral genome, E6 and E7, are involved in the immortalization of target cells. Because several oncogenes including mutant ras, EGF receptor, ErbB2/Her2, c-myc and v-src upregulate VEGF expression, we asked whether HVP-16 E6 oncoprotein could act in a similar fashion. We found that HPV-16 E6-positive cells generally express high levels of VEGF message. Furthermore, co-expression of the VEGF promoter-Luc (luciferase) reporter gene with E6 in both human keratinocytes and mouse fibroblast showed that E6 oncoprotein upregulates VEGF promoter activity, and does so in a p53 independent manner. An E6 responsive region which comprises four Sp-1 sites, between −194 and −50 bp of the VEGF promoter, is also necessary for constitutive VEGF transcription. Taken together, our results suggest the possibility that the HPV oncoprotein E6 may contribute to tumor angiogenesis by direct stimulation of the VEGF gene.


International Journal of Cancer | 1999

Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras.

Matthias M. Feldkamp; Nelson Lau; Janusz Rak; Robert S. Kerbel; Abhijit Guha

Vascular endothelial growth Factor (VEGF) has been identified as a key angiogenic factor involved in the growth and malignant progression of tumours. Glioblastoma multiforme (GBM) are the most common primary human brain tumours, histo‐pathologically characterized by intense tumour angiogenesis. GBMs do not harbour oncogenic Ras mutations, but there is a functional up‐regulation of Ras signaling through activation of receptor tyrosine kinases overexpressed by these tumours. We demonstrate that Ras pathway activation regulates VEGF secretion in astrocytoma cell lines. Ras pathway inhibition was carried out using genetic and pharmacologic techniques. Astrocytoma cells that were transfected to express the dominant inhibitory mutant H‐RasN17 demonstrated a reduction in VEGF secretion under both normoxic and hypoxic conditions. Cells treated with the farnesyl transferase inhibitor L‐744,832 demonstrated similar reductions in VEGF secretion. Furthermore, astrocytoma cells expressing a constitutively phosphorylated and truncated EGF‐R common in GBMs (EGFRvIII or p140EGF‐R) demonstrate further elevations in Ras activation, resulting in a further increase in VEGF secretion. We have previously demonstrated that activation of Ras plays a vital role in transducing mitogenic signals in human malignant astrocytoma cells. Our present results further extend the role of Ras activation in modulating tumour angiogenesis in these tumours. We propose that Ras may contribute to the angiogenic switch in astrocytomas. Int. J. Cancer, 81:118–124, 1999.

Collaboration


Dive into the Janusz Rak's collaboration.

Top Co-Authors

Avatar

Brian Meehan

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Robert S. Kerbel

Sunnybrook Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Delphine Garnier

Montreal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nathalie Magnus

Montreal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Montermini

Montreal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nigel Mackman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joanne Yu

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge