Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaqueline L. Kiplinger is active.

Publication


Featured researches published by Jaqueline L. Kiplinger.


Nature Chemistry | 2010

Uranium azide photolysis results in C–H bond activation and provides evidence for a terminal uranium nitride

Robert K. Thomson; Thibault Cantat; Brian L. Scott; David E. Morris; Enrique R. Batista; Jaqueline L. Kiplinger

Uranium nitride [U[triple bond]N](x) is an alternative nuclear fuel that has great potential in the expanding future of nuclear power; however, very little is known about the U[triple bond]N functionality. We show, for the first time, that a terminal uranium nitride complex can be generated by photolysis of an azide (U-N=N=N) precursor. The transient U[triple bond]N fragment is reactive and undergoes insertion into a ligand C-H bond to generate new N-H and N-C bonds. The mechanism of this unprecedented reaction has been evaluated through computational and spectroscopic studies, which reveal that the photochemical azide activation pathway can be shut down through coordination of the terminal azide ligand to the Lewis acid B(C(6)F(5))(3). These studies demonstrate that photochemistry can be a powerful tool for inducing redox transformations for organometallic actinide complexes, and that the terminal uranium nitride fragment is reactive, cleaving strong C-H bonds.


Journal of the American Chemical Society | 2008

Organometallic Uranium(V)−Imido Halide Complexes: From Synthesis to Electronic Structure and Bonding

Christopher R. Graves; Ping Yang; Stosh A. Kozimor; Anthony E. Vaughn; David L. Clark; Steven D. Conradson; Eric J. Schelter; Brian L. Scott; J. D. Thompson; P. Jeffrey Hay; David E. Morris; Jaqueline L. Kiplinger

Reaction of (C5Me5)2U(=N-2,4,6-(t)Bu3-C6H2) or (C5Me5)2U(=N-2,6-(i)Pr2-C6H3)(THF) with 5 equiv of CuX(n) (n = 1, X = Cl, Br, I; n = 2, X = F) affords the corresponding uranium(V)-imido halide complexes, (C5Me5)2U(=N-Ar)(X) (where Ar = 2,4,6-(t)Bu3-C6H2 and X = F (3), Cl (4), Br (5), I (6); Ar = 2,6-(i)Pr2-C6H3 and X = F (7), Cl (8), Br (9), I (10)), in good isolated yields of 75-89%. These compounds have been characterized by a combination of single-crystal X-ray diffraction, (1)H NMR spectroscopy, elemental analysis, mass spectrometry, cyclic voltammetry, UV-visible-NIR absorption spectroscopy, and variable-temperature magnetic susceptibility. The uranium L(III)-edge X-ray absorption spectrum of (C5Me5)2U(=N-2,4,6-(t)Bu3-C6H2)(Cl) (4) was analyzed to obtain structural information, and the U=N imido (1.97(1) A), U-Cl (2.60(2) A), and U-C5Me5 (2.84(1) A) distances were consistent with those observed for compounds 3, 5, 6, 8-10, which were all characterized by single-crystal X-ray diffraction studies. All (C5Me5)2U(=N-Ar)(X) complexes exhibit U(V)/U(IV) and U(VI)/U(V) redox couples by voltammetry, with the potential separation between these metal-based couples remaining essentially constant at approximately 1.50 V. The electronic spectra are comprised of pi-->pi* and pi-->nb(5f) transitions involving electrons in the metal-imido bond, and metal-centered f-f bands illustrative of spin-orbit and crystal-field influences on the 5f(1) valence electron configuration. Two distinct sets of bands are attributed to transitions derived from this 5f(1) configuration, and the intensities in these bands increase dramatically over those found in spectra of classical 5f(1) actinide coordination complexes. Temperature-dependent magnetic susceptibilities are reported for all complexes with mu(eff) values ranging from 2.22 to 2.53 mu(B). The onset of quenching of orbital angular momentum by ligand fields is observed to occur at approximately 40 K in all cases. Density functional theory results for the model complexes (C5Me5)2U(=N-C6H5)(F) (11) and (C5Me5)2U(=N-C6H5)(I) (12) show good agreement with experimental structural and electrochemical data and provide a basis for assignment of spectroscopic bands. The bonding analysis describes multiple bonding between the uranium metal center and imido nitrogen which is comprised of one sigma and two pi interactions with variable participation of 5f and 6d orbitals from the uranium center.


Chemical Communications | 2009

Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

Christopher R. Graves; Jaqueline L. Kiplinger

This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.


Journal of the American Chemical Society | 2008

A Lanthanide Phosphinidene Complex: Synthesis, Structure, and Phospha-Wittig Reactivity

Jason D. Masuda; Kimberly C. Jantunen; Oleg V. Ozerov; Kevin J. T. Noonan; Derek P. Gates; Brian L. Scott; Jaqueline L. Kiplinger

The first lanthanide complex featuring a phosphinidene functional group has been prepared and isolated. Preliminary reactivity studies demonstrate that the lutetium(III) phosphinidene complex, [{2-(iPr2P)-4-Me-C6H3}2NLu]2(μ-PMes)2, behaves as a phospha-Wittig reagent with aldehydes and ketones to give the corresponding phosphaalkenes. Attempts to use the bulky phosphine H2P-2,4,6-tBu3-C6H2 to kinetically stabilize a terminal phosphinidene resulted in C−H activation of an ortho-tBu group and formation of a phosphaindole.


Angewandte Chemie | 2009

Cation–Cation Interactions, Magnetic Communication, and Reactivity of the Pentavalent Uranium Ion [U(NtBu)2]+

Liam P. Spencer; Eric J. Schelter; Ping Yang; Robyn L. Gdula; Brian L. Scott; Joe D. Thompson; Jaqueline L. Kiplinger; Enrique R. Batista; James M. Boncella

Communication is important: The dimeric bis(imido) uranium complex [{U(NtBu)(2)(I)(tBu(2)bpy)}(2)] (see picture; U green, N blue, I red) has cation-cation interactions between [U(NR)(2)](+) ions. This f(1)-f(1) system also displays f orbital communication between uranium(V) centers at low temperatures, and can be oxidized to generate uranium(VI) bis(imido) complexes.


Inorganic Chemistry | 2008

Probing the chemistry, electronic structure and redox energetics in organometallic pentavalent uranium complexes.

Christopher R. Graves; Anthony E. Vaughn; Eric J. Schelter; Brian L. Scott; Joe D. Thompson; David E. Morris; Jaqueline L. Kiplinger

A series of organometallic pentavalent uranium complexes of the general formula (C(5)Me(5))(2)U(=N-2,6-(i)Pr(2)-C(6)H(3))(Y) (Y = monoanionic, non-halide ligand) have been prepared using a variety of routes. Utilizing the direct oxidation of (C(5)Me(5))(2)U(=N-2,6-(i)Pr(2)-C(6)H(3))(THF) (2) with the appropriate copper(I) salt yielded the triflate (Y = OTf (OSO(2)CF(3)), 11), thiolate (Y = SPh, 12), and acetylide (Y = C[triple bond]CPh, 13) complexes, while a salt metathesis route between the U(V)-imido (C(5)Me(5))(2)U(=N-2,6-(i)Pr(2)-C(6)H(3))(I) (10) and various alkali salts gave the diphenylamide (Y = NPh(2), 14), aryloxide (Y = OPh, 15), alkyl (Y = Me, 16), and aryl (Y = Ph, 17) complexes. Paired with 13, the isolation of 16 and 17 shows that U(V) can support the full range of carbon anions (sp, sp(2), and sp(3)), and these are, to the best of our knowledge, the first examples of pentavalent uranium complexes with anionic carbon moieties other than carbocyclic (C(5)R(5), C(7)H(7), C(8)H(8)) ligands. Finally, both protonolysis and insertion pathways afforded the U(V)-imido ketimide complex (C(5)Me(5))(2)U(=N-2,6-(i)Pr(2)-C(6)H(3))(N=CPh(2)) (18). The complexes have been isolated in good yield and characterized using various combinations of (1)H NMR spectroscopy, elemental analysis, mass spectrometry, single crystal X-ray diffraction, cyclic voltammetry, UV-visible-NIR absorption spectroscopy, and magnetic susceptibility measurements. All (C(5)Me(5))(2)U(=N-Ar)(X) (X = F, Cl, Br, I) and (C(5)Me(5))(2)U(=N-Ar)(Y) complexes exhibit U(VI)/U(V) and U(V)/U(IV) redox couples by voltammetry. The potential separation between these couples remains essentially constant at approximately 1.50 V, but both processes shift in tandem in potential by approximately 700 mV across the series of X/Y ligands. No significant differences between mu(eff) values or temperature dependencies in the magnetic susceptibility were observed for these complexes regardless of the identity of the ancillary X/Y ligand. However, an excellent linear correlation was observed between the chemical shift values of C(5)Me(5) ligand protons in the (1)H NMR spectra and the oxidation potentials of (C(5)Me(5))(2)U(=N-2,6-(i)Pr(2)-C(6)H(3))(X/Y), suggesting that there is a common origin, overall sigma-/pi-donation from the ancillary X/Y ligand to the metal, contributing to both observables. Combined, these data confer the following trend in increasing sigma/pi-donating ability of the X/Y ligand to the U(V) metal center: OTf < I < Br < Cl < SPh < C[triple bond]CPh < F < [OPh approximately Me approximately Ph] << NPh(2) < N=CPh(2). These (C(5)Me(5))(2)U(=N-2,6-(i)Pr(2)-C(6)H(3))(X/Y) complexes also show distinct hallmarks of a covalent bonding interaction between the metal and the imide ligand that is modulated to varying degrees by the interaction between the X/Y ancillary ligand and the U(V) metal center. These signatures of covalency include stabilization of multiple metal oxidations states [U(VI), U(V), and U(IV)] and enhanced intensities in the intraconfiguration (f-f) transitions. Of particular note in this regard is the more than 20-fold enhancement in the f-f intensities observed for Y = C[triple bond]CPh and N=CPh(2), which is a clear reflection of the covalent metal-ligand bonding interactions sustained by the acetylide and ketimide ligands in these pentavalent systems.


Inorganic Chemistry | 2007

Systematic studies of early actinide complexes: uranium(IV) fluoroketimides.

Eric J. Schelter; Ping Yang; Brian L. Scott; J. D. Thompson; Richard L. Martin; P. Jeffrey Hay; David E. Morris; Jaqueline L. Kiplinger

The reaction of (C5Me5)2U(CH3)2 with 2 equiv of N[triple bond]C-ArF gives the fluorinated uranium(IV) bis(ketimide) complexes (C5Me5)2U[-N=C(CH3)(ArF)]2 [where ArF=2-F-C6H4 (4), 3-F-C6H4 (5), 4-F-C6H4 (6), 2,6-F2-C6H3 (7), 3,5-F2-C6H3 (8), 2,4,6-F3-C6H2 (9), 3,4,5-F3-C6H2 (10), and C6F5 (11)]. These have been characterized by single-crystal X-ray diffraction, 1H and 19F NMR, cyclic voltammetry, UV-visible-near-IR absorption spectroscopy, and variable-temperature magnetic susceptibility. Density functional theory (DFT) results are reported for complexes 6 and 11 for comparison with experimental data. The most significant structural perturbation imparted by the F substitution in these complexes is a rotation of the fluorinated aryl (ArF) group out of the plane defined by the N=C(CMe)(Cipso) fragment in complexes 7, 9, and 11 when the ArF group possesses two o-fluorine atoms. Excellent agreement is obtained between the DFT-calculated and experimental crystal structures for 11, which displays the distortion, as well as for 6, which does not. In 7, 9, and 11, the out-of-plane rotation results in large angles (phi=53.7-89.4 degrees) between the planes formed by ketimide atoms N=C(CMe)(Cipso) and the ketimide aryl groups. Complexes 6 and 10 do not contain o-fluorine atoms and display interplanar angles in the range of phi=7-26.8 degrees. Complex 4 with a single o-fluorine substituent has intermediate values of phi=20.4 and 49.5 degrees. The distortions in 7, 9, and 11 result from an unfavorable steric interaction between one of the two o-fluorine atoms and the methyl group [-N=C(CH3)] on the ketimide ligand. All complexes exhibit UV/UIV and UIV/UIII redox couples, although the distortion in 7, 9, and 11 appears to be a factor in rendering the UIV/UIII couple irreversible. The potential separation between these couples remains constant at 2.15+/-0.03 V. The electronic spectra are dominated by unusually intense f-f transitions in the near-IR that retain nearly identical band energies but vary in intensity as a function of the fluorinated ketimide ligand, and visible and near-UV bands assigned to metal (5f)-to-ligand (pi*) charge-transfer and interconfiguration (5f2-->5f16d1) transitions, respectively. Variable-temperature magnetic susceptibility data for these complexes indicate a temperature-independent paramagnetism (TIP) below approximately 50 K that results from admixing of low-lying crystal-field excited states derived from the symmetry-split 3H4 5f2 manifold into the ground state. The magnitude of the TIP is smaller for the complexes possessing two o-fluorine atoms (7, 9, and 11), indicating that the energy separation between ground and TIP-admixed excited states is larger as a consequence of the greater basicity of these ligands.


Angewandte Chemie | 2009

Challenging the Metallocene Dominance in Actinide Chemistry with a Soft PNP Pincer Ligand: New Uranium Structures and Reactivity Patterns

Thibault Cantat; Christopher R. Graves; Brian L. Scott; Jaqueline L. Kiplinger

A soft embrace for U: Replacement of C(5)Me(5) by the soft PNP pincer ligand is a successful strategy to promote new reactivities and support new structures for the actinide series (see picture, py-O = pyridine-N-oxide). The specific electronic and steric properties of the PNP ligand enable access to previously unreported structures not available for the C(5)Me(5) ligand set and support not only low-valent uranium but also the high-valent uranium(VI) ion.


Inorganic Chemistry | 2010

Actinide Redox-Active Ligand Complexes: Reversible Intramolecular Electron-Transfer in U(dpp-BIAN)2/U(dpp-BIAN)2(THF)

Eric J. Schelter; Ruilian Wu; Brian L. Scott; Joe D. Thompson; Thibault Cantat; Kevin D. John; Enrique R. Batista; David E. Morris; Jaqueline L. Kiplinger

Actinide complexes of the redox-active ligand (dpp-BIAN)(2-) (dpp-BIAN = 1,2-bis(2,6-diisopropylphenylimino)acenaphthylene), U(dpp-BIAN)(2) (1), U(dpp-BIAN)(2)(THF) (1-THF), and Th(dpp-BIAN)(2)(THF) (2-THF), have been prepared. Solid-state magnetic and single-crystal X-ray data for complex 1 indicate a ground-state U(IV)-pi*(4) configuration, whereas a (dpp-BIAN)(2-)-to-uranium electron transfer occurs for 1-THF, resulting in a U(III)-pi*(3) ground configuration. The solid-state magnetic data also indicate that interconversion between the two forms of the complex is possible, limited only by the ability of tetrahydrofuran (THF) vapor to penetrate the solid upon cooling of the sample. In contrast to those in the solid state, spectroscopic data acquired in THF indicate only the presence of the U(IV)-pi*(4) form for 1-THF in solution, evidenced by electronic absorption spectra and by measurement of the solution magnetic moment in THF-d(8) using the Evans method. Also reported is the electrochemistry of the complexes collected in CH(2)Cl(2), CF(3)C(6)H(5), and THF. As expected from the solution spectroscopic data, only small differences are observed in half-wave potentials of ligand-based processes in the presence of THF, consistent with the solution U(IV)-pi*(4) configuration of the complexes in all cases. Density functional theory calculations were undertaken for complexes 1 and 1-THF to determine if intrinsic energetic or structural factors underlie the observed charge-transfer process. While the calculated optimized geometries agree well with experimental results, it was not possible to arrive at a convergent solution for 1-THF in the U(III)-pi*(3) configuration. However, perturbations in the orbital energies in 1 versus 1-THF for the U(IV)-pi*(4) configuration do point to a diminished highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap in 1-THF, consistent with the solid-state magnetic data. These results represent the first example of a stable and well-defined, reversible intramolecular electron transfer in an actinide complex with redox-active ligands.


Chemical Communications | 2002

Enhancing the reactivity of uranium(vi) organoimido complexes with diazoalkanesElectronic supplementary information (ESI) available: experimental, including general procedures, materials and synthesis of complexes 2 and 3. See http://www.rsc.org/suppdata/cc/b1/b109455f/

Jaqueline L. Kiplinger; David E. Morris; Brian L. Scott; Carol J. Burns

Diphenyldiazomethane effects a two-electron oxidation of the uranium(IV) monoimido complex (C5Me5)2U(=N-2,4,6-t-Bu3C6H2) to give the uranium(VI) mixed bis(imido) complex, (C5Me5)2U(=N-2,4,6-t-Bu3C6H2)(=N-N=CPh2), which undergoes a rare cyclometallation reaction upon mild thermolysis to afford a uranium(IV) bis(amide) complex that results from net addition of a C-H bond of an ortho tert-butyl group across the N=U=N core.

Collaboration


Dive into the Jaqueline L. Kiplinger's collaboration.

Top Co-Authors

Avatar

Brian L. Scott

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David E. Morris

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Graves

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eric J. Schelter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert K. Thomson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joe D. Thompson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marisa J. Monreal

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin D. John

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge