Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jared B. Shaw is active.

Publication


Featured researches published by Jared B. Shaw.


Journal of the American Chemical Society | 2013

Complete Protein Characterization Using Top-Down Mass Spectrometry and Ultraviolet Photodissociation

Jared B. Shaw; Wenzong Li; Dustin D. Holden; Yan Zhang; Jens Griep-Raming; Ryan T. Fellers; Bryan P. Early; Paul M. Thomas; Neil L. Kelleher; Jennifer S. Brodbelt

The top-down approach to proteomics offers compelling advantages due to the potential to provide complete characterization of protein sequence and post-translational modifications. Here we describe the implementation of 193 nm ultraviolet photodissociation (UVPD) in an Orbitrap mass spectrometer for characterization of intact proteins. Near-complete fragmentation of proteins up to 29 kDa is achieved with UVPD including the unambiguous localization of a single residue mutation and several protein modifications on Pin1 (Q13526), a protein implicated in the development of Alzheimers disease and in cancer pathogenesis. The 5 ns, high-energy activation afforded by UVPD exhibits far less precursor ion-charge state dependence than conventional collision- and electron-based dissociation methods.


Proteomics | 2014

The first pilot project of the consortium for top-down proteomics: a status report.

Xibei Dang; Jenna Scotcher; Si Wu; Rosalie K. Chu; Nikola Tolić; Ioanna Ntai; Paul M. Thomas; Ryan T. Fellers; Bryan P. Early; Kenneth R. Durbin; Richard D. LeDuc; J. Jens Wolff; Christopher J. Thompson; Jingxi Pan; Jun Han; Jared B. Shaw; Joseph P. Salisbury; Michael L. Easterling; Christoph H. Borchers; Jennifer S. Brodbelt; Jeffery N. Agar; Ljiljana Paša-Tolić; Neil L. Kelleher; Nicolas L. Young

Pilot Project #1—the identification and characterization of human histone H4 proteoforms by top‐down MS—is the first project launched by the Consortium for Top‐Down Proteomics (CTDP) to refine and validate top‐down MS. Within the initial results from seven participating laboratories, all reported the probability‐based identification of human histone H4 (UniProt accession P62805) with expectation values ranging from 10−13 to 10−105. Regarding characterization, a total of 74 proteoforms were reported, with 21 done so unambiguously; one new PTM, K79ac, was identified. Inter‐laboratory comparison reveals aspects of the results that are consistent, such as the localization of individual PTMs and binary combinations, while other aspects are more variable, such as the accurate characterization of low‐abundance proteoforms harboring >2 PTMs. An open‐access tool and discussion of proteoform scoring are included, along with a description of general challenges that lie ahead including improved proteoform separations prior to mass spectrometric analysis, better instrumentation performance, and software development.


Analytical Chemistry | 2014

Ultraviolet Photodissociation for Characterization of Whole Proteins on a Chromatographic Time Scale.

Joe R. Cannon; Michael B. Cammarata; Scott A. Robotham; Victoria C. Cotham; Jared B. Shaw; Ryan T. Fellers; Bryan P. Early; Paul M. Thomas; Neil L. Kelleher; Jennifer S. Brodbelt

Intact protein characterization using mass spectrometry thus far has been achieved at the cost of throughput. Presented here is the application of 193 nm ultraviolet photodissociation (UVPD) for top down identification and characterization of proteins in complex mixtures in an online fashion. Liquid chromatographic separation at the intact protein level coupled with fast UVPD and high-resolution detection resulted in confident identification of 46 unique sequences compared to 44 using HCD from prepared Escherichia coli ribosomes. Importantly, nearly all proteins identified in both the UVPD and optimized HCD analyses demonstrated a substantial increase in confidence in identification (as defined by an average decrease in E value of ∼40 orders of magnitude) due to the higher number of matched fragment ions. Also shown is the potential for high-throughput characterization of intact proteins via liquid chromatography (LC)–UVPD-MS of molecular weight-based fractions of a Saccharomyces cerevisiae lysate. In total, protein products from 215 genes were identified and found in 292 distinct proteoforms, 168 of which contained some type of post-translational modification.


Nature Communications | 2012

Tyrosine sulfation in a Gram-negative bacterium

Sang-Wook Han; Sang Won Lee; Ofir Bahar; Benjamin Schwessinger; Michelle R. Robinson; Jared B. Shaw; James A. Madsen; Jennifer S. Brodbelt; Pamela C. Ronald

Tyrosine sulfation, a well-characterized post-translation modification in eukaryotes, has not previously been reported in prokaryotes. Here, we demonstrate that the RaxST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase. We used a newly developed sulfotransferase assay and ultraviolet photodissociation mass spectrometry to demonstrate that RaxST catalyses sulfation of tyrosine 22 of the Xoo Ax21 (activator of XA21-mediated immunity) protein. These results demonstrate a previously undescribed post-translational modification in a prokaryotic species with implications for studies of host immune responses and bacterial cell-cell communication systems.


Journal of the American Society for Mass Spectrometry | 2011

Implementing Photodissociation in an Orbitrap Mass Spectrometer

Lisa Vasicek; Aaron R. Ledvina; Jared B. Shaw; Jens Griep-Raming; Michael S. Westphall; Joshua J. Coon; Jennifer S. Brodbelt

We modified a dual pressure linear ion trap Orbitrap to permit infrared multiphoton dissociation (IRMPD) in the higher energy collisional dissociation (HCD) cell for high resolution analysis. A number of parameters, including the pressures of the C-trap and HCD cell, the radio frequency (rf) amplitude applied to the C-trap, and the HCD DC offset, were evaluated to optimize IRMPD efficiency and maintain a high signal-to-noise ratio. IRMPD was utilized for characterization of phosphopeptides, supercharged peptides, and N-terminal modified peptides, as well as for top-down protein analysis. The high resolution and high mass accuracy capabilities of the Orbitrap analyzer facilitated confident assignment of product ions arising from IRMPD.


Molecular & Cellular Proteomics | 2013

High-throughput Database Search and Large-scale Negative Polarity Liquid Chromatography–Tandem Mass Spectrometry with Ultraviolet Photodissociation for Complex Proteomic Samples

James A. Madsen; Hua Xu; Michelle R. Robinson; Andrew P. Horton; Jared B. Shaw; David K. Giles; Tamer S. Kaoud; Kevin N. Dalby; M. Stephen Trent; Jennifer S. Brodbelt

The use of ultraviolet photodissociation (UVPD) for the activation and dissociation of peptide anions is evaluated for broader coverage of the proteome. To facilitate interpretation and assignment of the resulting UVPD mass spectra of peptide anions, the MassMatrix database search algorithm was modified to allow automated analysis of negative polarity MS/MS spectra. The new UVPD algorithms were developed based on the MassMatrix database search engine by adding specific fragmentation pathways for UVPD. The new UVPD fragmentation pathways in MassMatrix were rigorously and statistically optimized using two large data sets with high mass accuracy and high mass resolution for both MS1 and MS2 data acquired on an Orbitrap mass spectrometer for complex Halobacterium and HeLa proteome samples. Negative mode UVPD led to the identification of 3663 and 2350 peptides for the Halo and HeLa tryptic digests, respectively, corresponding to 655 and 645 peptides that were unique when compared with electron transfer dissociation (ETD), higher energy collision-induced dissociation, and collision-induced dissociation results for the same digests analyzed in the positive mode. In sum, 805 and 619 proteins were identified via UVPD for the Halobacterium and HeLa samples, respectively, with 49 and 50 unique proteins identified in contrast to the more conventional MS/MS methods. The algorithm also features automated charge determination for low mass accuracy data, precursor filtering (including intact charge-reduced peaks), and the ability to combine both positive and negative MS/MS spectra into a single search, and it is freely open to the public. The accuracy and specificity of the MassMatrix UVPD search algorithm was also assessed for low resolution, low mass accuracy data on a linear ion trap. Analysis of a known mixture of three mitogen-activated kinases yielded similar sequence coverage percentages for UVPD of peptide anions versus conventional collision-induced dissociation of peptide cations, and when these methods were combined into a single search, an increase of up to 13% sequence coverage was observed for the kinases. The ability to sequence peptide anions and cations in alternating scans in the same chromatographic run was also demonstrated. Because ETD has a significant bias toward identifying highly basic peptides, negative UVPD was used to improve the identification of the more acidic peptides in conjunction with positive ETD for the more basic species. In this case, tryptic peptides from the cytosolic section of HeLa cells were analyzed by polarity switching nanoLC-MS/MS utilizing ETD for cation sequencing and UVPD for anion sequencing. Relative to searching using ETD alone, positive/negative polarity switching significantly improved sequence coverages across identified proteins, resulting in a 33% increase in unique peptide identifications and more than twice the number of peptide spectral matches.


Journal of the American Society for Mass Spectrometry | 2013

Comparison of MS/MS methods for characterization of DNA/cisplatin adducts.

Zhe Xu; Jared B. Shaw; Jennifer S. Brodbelt

AbstractThe development of activation/dissociation techniques such as ultraviolet photodissociation (UVPD), infrared multiphoton dissociation (IRMPD), and electron transfer dissociation (ETD) as alternatives to collision induced dissociation (CID) has extended the range of strategies for characterizing biologically relevant molecules. Here, we describe a comprehensive comparison of CID, IRMPD, UVPD, ETD, and hybrid processes termed ETcaD and ET-IRMPD (and analogous hybrid methods in the negative mode NETcaD and NET-IRMPD) for generating sequence-specific fragment ions and allowing adduction sites to be pinpointed for DNA/cisplatin adducts. Among the six MS/MS methods, the numerous products generated by the IRMPD and UVPD techniques resulted in the most specific and extensive backbone cleavages. We conclude that IRMPD and UVPD methods generally offer the best characteristics for pinpointing the cisplatin adduction sites in the fragment-rich spectra.


Nature Methods | 2017

Informed-Proteomics: open-source software package for top-down proteomics

Jungkap Park; Paul D. Piehowski; Christopher S. Wilkins; Mowei Zhou; Joshua Mendoza; Grant M. Fujimoto; Bryson C. Gibbons; Jared B. Shaw; Yufeng Shen; Anil K. Shukla; Ronald J. Moore; Tao Liu; Vladislav A. Petyuk; Nikola Tolić; Ljiljana Paša-Tolić; Richard D. Smith; Samuel H. Payne; Sangtae Kim

Top-down proteomics, the analysis of intact proteins in their endogenous form, preserves valuable information about post-translation modifications, isoforms and proteolytic processing. The quality of top-down liquid chromatography–tandem MS (LC-MS/MS) data sets is rapidly increasing on account of advances in instrumentation and sample-processing protocols. However, top-down mass spectra are substantially more complex than conventional bottom-up data. New algorithms and software tools for confident proteoform identification and quantification are needed. Here we present Informed-Proteomics, an open-source software suite for top-down proteomics analysis that consists of an LC-MS feature-finding algorithm, a database search algorithm, and an interactive results viewer. We compare our tool with several other popular tools using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.


Analytical Chemistry | 2013

Activated ion negative electron transfer dissociation of multiply charged peptide anions.

Jared B. Shaw; Desmond Allen Kaplan; Jennifer S. Brodbelt

We report the implementation and evaluation of activated ion negative electron transfer dissociation (AI-NETD) in order to enhance the analytical capabilities of NETD for the elucidation of doubly deprotonated peptide anions. The analytical figures-of-merit and fragmentation characteristics are compared for NETD alone and with supplemental collisional activation of the charge reduced precursors or infrared photoactivation of the entire ion population during the NETD reaction period. The addition of supplemental collisional activation of charge reduced precursor ions or infrared photoactivation of the entire ion population concomitant with the NETD reaction period significantly improves sequencing capabilities for peptide anions as evidenced by the greater abundances of product ions and overall sequence coverage. Neither of these two AI-NETD methods significantly alters the net fragmentation efficiencies relative to NETD; however, the sequence ion conversion percentages with respect to formation of diagnostic product ions are notably higher. Supplemental infrared photoactivation outperforms collisional activation for most of the peptide fragmentation metrics evaluated.


Analytical Chemistry | 2013

Extending the isotopically resolved mass range of Orbitrap mass spectrometers.

Jared B. Shaw; Jennifer S. Brodbelt

The routine analysis of large biomolecules (greater than 30 kDa) has been a challenge for Orbitrap mass spectrometers due to the relatively high kinetic energy of ions entering and within the Orbitrap mass analyzer. This characteristic results in rapid signal decay for large biomolecules due to energetic collisions with background gas molecules. Here, we report a method to significantly enhance the analysis of large biomolecules in an Orbitrap mass spectrometer. The combination of reduced C-trap and higher energy collisional dissociation (HCD) cell bath gas pressures, using helium as the bath gas and trapping ions in the HCD cell prior to mass analysis, greatly increased sensitivity and reduced signal decay for large protein ions. As a result, isotopic resolution of monoclonal immunoglobulin G was achieved, and we have established a new high-mass record for which accurate mass measurement and isotopic resolution have been achieved.

Collaboration


Dive into the Jared B. Shaw's collaboration.

Top Co-Authors

Avatar

Jennifer S. Brodbelt

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Ljiljana Paša-Tolić

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

James A. Madsen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Xu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikola Tolić

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosalie K. Chu

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge