Jared B. Smith
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jared B. Smith.
The Journal of Neuroscience | 2010
Jared B. Smith; Kevin D. Alloway
Recent evidence indicates that the rat claustrum interconnects the motor cortical areas in both hemispheres. To elucidate the functional specificity of the interhemispheric connections between the claustrum and primary motor (MI) cortex, anterograde tracer injections in specific parts of MI were paired with retrograde tracer injections in homotopic sites of the opposite hemisphere. In addition to injecting the MI forepaw (Fp) region in both hemispheres, we injected the region associated with whisker retractions (Re) and the more caudal rhythmic whisking (RW) region. While the MI-Fp region has few connections with the claustrum of either hemisphere, both whisker regions project to the contralateral claustrum, with those from the MI-RW region being denser and more extensive than those originating from the MI-Re region. Retrograde tracer injections in the MI-RW region produced more labeled neurons in the ipsilateral claustrum than retrograde tracer injections in the MI-Re. Consistent with these patterns, the overlap of labeled terminals and soma in the claustrum was greatest when both tracers were injected into the MI-RW region. When retrograde tracers were injected into the claustrum, the highest density of labeled neurons in MI appeared in the contralateral RW region. Tracer injections in the claustrum also revealed hundreds of labeled neurons throughout its rostrocaudal extent, thereby establishing the presence of long-range intraclaustral connections. These results indicate that the intrinsic and extrinsic connections of the rat claustrum are structured for rapid, interhemispheric transmission of information needed for bilateral coordination of the MI regions that regulate whisker movements.
The Journal of Comparative Neurology | 2009
Kevin D. Alloway; Jared B. Smith; Kyle J. Beauchemin; Michelle L. Olson
In rats, whisking behavior is characterized by high‐frequency synchronous movements and other stereotyped patterns of bilateral coordination that are rarely seen in the bilateral movements of the limbs. This suggests that the motor systems controlling whisker and limb movements must have qualitative or quantitative differences in their interhemispheric connections. To test this hypothesis, anterograde tracing methods were used to characterize the bilateral distribution of projections from the whisker and forepaw regions in the primary motor (MI) cortex. Unilateral tracer injections in the MI whisker or forepaw regions revealed robust projections to the corresponding MI cortical area in the contralateral hemisphere. Both MI regions project bilaterally to the neostriatum, but the corticostriatal projections from the whisker region are denser and more evenly distributed across both hemispheres than those from the MI forepaw region. The MI whisker region projects bilaterally to several nuclei in the thalamus, whereas the MI forepaw region projects almost exclusively to the ipsilateral thalamus. The MI whisker region sends dense projections to the contralateral claustrum, but those to the ipsilateral claustrum are less numerous. By contrast, the MI forepaw region sends few projections to the claustrum of either hemisphere. Bilateral deposits of different tracers in MI revealed overlapping projections to the neostriatum, thalamus, and claustrum when the whisker regions were injected, but not when the forepaw regions were injected. These results suggest that the bilateral coordination of the whiskers depends, in part, on MI projections to the contralateral neostriatum, thalamus, and claustrum. J. Comp. Neurol. 515:548–564, 2009.
Frontiers in Neural Circuits | 2013
Jared B. Smith; Kevin D. Alloway
Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper.
The Journal of Comparative Neurology | 2008
Kevin D. Alloway; Michelle L. Olson; Jared B. Smith
Rat whisking behavior is characterized by high amounts of bilateral coordination in which whisker movements on both sides of the face are linked. To elucidate the neural substrate that might mediate this bilateral coordination, neuronal tracers were used to characterize the bilateral distribution of corticothalamic projections from primary motor (MI) cortex. Some rats received tracers in the MI whisker region, whereas others received tracers in the MI forepaw region. The MI whisker region projects bilaterally to the anteromedial (AM), ventromedial (VM), and ventrolateral (VL) nuclei, and to parts of the intralaminar nuclei. By contrast, the MI forepaw region sends virtually no projections to the contralateral thalamus. Consistent with these findings, bilateral injections of different tracers into the MI whisker region of each hemisphere produced tracer overlap on both sides of the thalamus. Furthermore, MI whisker projections to the contralateral thalamus terminate in close proximity to the thalamocortical neurons that project to the MI whisker region of that contralateral hemisphere. The terminal endings of the contralateral corticothalamic projections contain small synaptic varicosities and other features that resemble the modulator pathways described for other corticothalamic projection systems. In addition, tracer injections into AM, VM, and VL revealed dense clusters of labeled neurons in layer VI of the medial agranular (Agm) zone, which corresponds to the MI whisker region. These results suggest that projections from the MI whisker region to the contralateral thalamus may modulate the callosal interactions that are presumed to play a role in coordinating bilateral whisking behavior. J. Comp. Neurol. 510:100–116, 2008.
The Journal of Neuroscience | 2012
Jared B. Smith; Harsha Radhakrishnan; Kevin D. Alloway
The function of the claustrum is a fundamental issue in neuroscience. Anatomical data indicate that the rat claustrum is part of an interhemispheric circuit that could be involved in the bilateral coordination of whisker movements. Given that whisking is a somesthetic-guided motor behavior, the goal of the current study was to elucidate the connections of the claustrum with respect to the whisker representations in the primary somatosensory (wSI) and motor (wMI) cortical areas. Anterograde tracer injections showed that wMI projects most densely to the claustrum in the contralateral hemisphere, whereas wSI does not project to the claustrum in either hemisphere. Injections of different retrograde tracers into wMI and wSI of the same animal revealed intermingled populations of labeled neurons in the claustrum, as well as many double-labeled neurons. This indicates that the same part of the claustrum projects to the whisker representations in both SI and MI. Finally, injections of different anterograde tracers in the wMI regions of both hemispheres were combined with a retrograde tracer injection in wSI, and this produced dense terminal labeling around retrogradely labeled neurons in the claustrum of both hemispheres. Although the rodent claustrum is probably involved in the interhemispheric coordination of the MI and SI whisker representations, it does not receive inputs from both of these cortical regions. Hence, the claustrum should not be universally regarded as an integrator of somesthetic and motor information.
Frontiers in Systems Neuroscience | 2014
Jared B. Smith; Kevin D. Alloway
The claustrum has a role in the interhemispheric transfer of certain types of sensorimotor information. Whereas the whisker region in rat motor (M1) cortex sends dense projections to the contralateral claustrum, the M1 forelimb representation does not. The claustrum sends strong ipsilateral projections to the whisker regions in M1 and somatosensory (S1) cortex, but its projections to the forelimb cortical areas are weak. These distinctions suggest that one function of the M1 projections to the contralateral claustrum is to coordinate the cortical areas that regulate peripheral sensor movements during behaviors that depend on bilateral sensory acquisition. If this hypothesis is true, then similar interhemispheric circuits should interconnect the frontal eye fields (FEF) with the contralateral claustrum and its network of projections to vision-related cortical areas. To test this hypothesis, anterograde and retrograde tracers were placed in physiologically-defined parts of the FEF and primary visual cortex (V1) in rats. We observed dense FEF projections to the contralateral claustrum that terminated in the midst of claustral neurons that project to both FEF and V1. While the FEF inputs to the claustrum come predominantly from the contralateral hemisphere, the claustral projections to FEF and V1 are primarily ipsilateral. Detailed comparison of the present results with our previous studies on somatomotor claustral circuitry revealed a well-defined functional topography in which the ventral claustrum is connected with visuomotor cortical areas and the dorsal regions are connected with somatomotor areas. These results suggest that subregions within the claustrum play a critical role in coordinating the cortical areas that regulate the acquisition of modality-specific sensory information during exploration and other behaviors that require sensory attention.
The Journal of Neuroscience | 2014
Bing-Xing Huo; Jared B. Smith; Patrick J. Drew
Hemodynamic signals are widely used to infer neural activity in the brain. We tested the hypothesis that hemodynamic signals faithfully report neural activity during voluntary behaviors by measuring cerebral blood volume (CBV) and neural activity in the somatosensory cortex and frontal cortex of head-fixed mice during locomotion. Locomotion induced a large and robust increase in firing rate and gamma-band (40–100 Hz) power in the local field potential in the limb representations in somatosensory cortex, and was accompanied by increases in CBV, demonstrating that hemodynamic signals are coupled with neural activity in this region. However, in the frontal cortex, CBV did not change during locomotion, but firing rate and gamma-band power both increased, indicating a decoupling of neural activity from the hemodynamic signal. These results show that hemodynamic signals are not faithful indicators of the mean neural activity in the frontal cortex during locomotion; thus, the results from fMRI and other hemodynamic imaging methodologies for studying neural processes must be interpreted with caution.
The Journal of Comparative Neurology | 2010
Kevin D. Alloway; Jared B. Smith; Kyle J. Beauchemin
The whisker region in rat primary motor (MI) cortex projects to several brainstem regions, but the relative strength of these projections has not been characterized. We recently quantified the MI projections to bilateral targets in the forebrain (Alloway et al. [ 2009 ] J Comp Neurol 515:548–564), and the present study extends those findings by quantifying the MI projections to bilateral targets in the brainstem. We found that both the whisker and forepaw regions in MI project most strongly to the basal pons and superior colliculus. While the MI forepaw region projects mainly to the ipsilateral basilar pons, the MI whisker region has significantly more connections with the contralateral side. This bilateral difference suggests that corticopontine projections from the MI whisker region may have a role in coordinating bilateral whisker movements. Anterograde tracer injections in MI did not reveal any direct projections to the facial nucleus, but retrograde tracer injections in the facial nucleus revealed some labeled neurons in MI cortex. The number of retrogradely labeled neurons in MI, however, was dwarfed by a much larger number of labeled neurons in the superior colliculus and other brainstem regions. Together, our anterograde and retrograde tracing results indicate that the superior colliculus provides the most effective route for transmitting information from MI to the facial nucleus. J. Comp. Neurol. 518:4546–4566, 2010.
Journal of Neurophysiology | 2012
Jared B. Smith; Todd M. Mowery; Kevin D. Alloway
The dorsolateral part of the striatum (DLS) represents the initial stage for processing sensorimotor information in the basal ganglia. Although the DLS receives much of its input from the primary somatosensory (SI) cortex, peripheral somesthetic stimulation activates the DLS at latencies that are shorter than the response latencies recorded in the SI cortex. To identify the subcortical regions that transmit somesthetic information directly to the DLS, we deposited small quantities of retrograde tracers at DLS sites that displayed consistent time-locked responses to controlled whisker stimulation. The neurons that were retrogradely labeled by these injections were located mainly in the sensorimotor cortex and, to a lesser degree, in the amygdala and thalamus. Quantitative analysis of neuronal labeling in the thalamus indicated that the strongest thalamic input to the whisker-sensitive part of the DLS originates from the medial posterior nucleus (POm), a somesthetic-related region that receives inputs from the spinal trigeminal nucleus. Anterograde tracer injections in POm confirmed that this thalamic region projects to the DLS neuropil. In subsequent experiments, simultaneous recordings from POm and the DLS during whisker stimulation showed that POm consistently responds before the DLS. These results suggest that POm could transmit somesthetic information to the DLS, and this modality-specific thalamostriatal pathway may cooperate with the thalamostriatal projections that originate from the intralaminar nuclei.
Journal of Neurophysiology | 2015
Michael J Shirey; Jared B. Smith; D'Anne E. Kudlik; Bing-Xing Huo; Stephanie E. Greene; Patrick J. Drew
Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼ 0.1 °C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼ 2 °C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still > 1 °C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures.