Jared M. Schrader
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jared M. Schrader.
PLOS Genetics | 2014
Jared M. Schrader; Bo Zhou; Gene-Wei Li; Keren Lasker; W. Seth Childers; Brandon Williams; Tao Long; Sean Crosson; Harley H. McAdams; Jonathan S. Weissman; Lucy Shapiro
Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jared M. Schrader; Stephen J. Chapman; Olke C. Uhlenbeck
To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.
PLOS Genetics | 2015
Bo Zhou; Jared M. Schrader; Virginia S. Kalogeraki; Eduardo Abeliuk; Cong B. Dinh; James Q. Pham; Zhongying Z. Cui; David L. Dill; Harley H. McAdams; Lucy Shapiro
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.
Nucleic Acids Research | 2011
Jared M. Schrader; Olke C. Uhlenbeck
Three base pairs in the T-stem are primarily responsible for the sequence-specific interaction of tRNA with Escherichia coli and Thermus thermophilus EF-Tu. While the amino acids on the surface of EF-Tu that contact aminoacyl-tRNA (aa-tRNA) are highly conserved among bacteria, the T-stem sequences of individual tRNA are variable, making it unclear whether or not this protein–nucleic acid interaction is also sequence specific in other bacteria. We propose and validate a thermodynamic model that predicts the ΔG° of any tRNA to EF-Tu using the sequence of its three T-stem base pairs. Despite dramatic differences in T-stem sequences, the predicted ΔG° values for the majority of tRNA classes are similar in all bacteria and closely match the ΔG° values determined for E. coli tRNAs. Each individual tRNA class has evolved to have a characteristic ΔG° value to EF-Tu, but different T-stem sequences are used to achieve this ΔG° value in different bacteria. Thus, the compensatory relationship between the affinity of the tRNA body and the affinity of the esterified amino acid is universal among bacteria. Additionally, we predict and validate a small number of aa-tRNAs that bind more weakly to EF-Tu than expected and thus are candidates for acting as activated amino acid donors in processes outside of translation.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Jared M. Schrader; Gene-Wei Li; W. Seth Childers; Adam M. Perez; Jonathan S. Weissman; Lucy Shapiro; Harley H. McAdams
Significance The Caulobacter cell cycle is controlled by a genetic circuit that dynamically regulates transcription of nearly 20% of the genome; however, the role of translational control of cell cycle progression is unexplored. To understand the contribution of translational regulation, we measured both mRNA and translation levels at multiple stages of the cell cycle. We found that cell cycle-dependent translational regulation is important for hundreds of genes and also that the positioning of regulatory proteins to a specific cell pole is coordinated by the timing of their synthesis. The cell cycle-regulatory pathway that controls translation rates is linked to the regulatory circuit that controls transcription rates of cell cycle-regulated genes. Progression of the Caulobacter cell cycle requires temporal and spatial control of gene expression, culminating in an asymmetric cell division yielding distinct daughter cells. To explore the contribution of translational control, RNA-seq and ribosome profiling were used to assay global transcription and translation levels of individual genes at six times over the cell cycle. Translational efficiency (TE) was used as a metric for the relative rate of protein production from each mRNA. TE profiles with similar cell cycle patterns were found across multiple clusters of genes, including those in operons or in subsets of operons. Collections of genes associated with central cell cycle functional modules (e.g., biosynthesis of stalk, flagellum, or chemotaxis machinery) have consistent but different TE temporal patterns, independent of their operon organization. Differential translation of operon-encoded genes facilitates precise cell cycle-timing for the dynamic assembly of multiprotein complexes, such as the flagellum and the stalk and the correct positioning of regulatory proteins to specific cell poles. The cell cycle-regulatory pathways that produce specific temporal TE patterns are separate from—but highly coordinated with—the transcriptional cell cycle circuitry, suggesting that the scheduling of translational regulation is organized by the same cyclical regulatory circuit that directs the transcriptional control of the Caulobacter cell cycle.
Journal of Biological Chemistry | 2012
Stephen J. Chapman; Jared M. Schrader; Olke C. Uhlenbeck
Background: The cognate-esterified amino acid is critical for optimal delivery of aminoacyl-tRNAs to the ribosome by EF-Tu. Results: Mutation of His-66 in EF-Tu alters the specific binding of many, but not all aminoacyl-tRNAs, but does not affect decoding. Conclusion: His-66 is critical for the specificity of EF-Tu for the esterified amino acid. Significance: Selective mutation of His-66 could improve the incorporation efficiency of unnatural amino acids into proteins. The universally conserved His-66 of elongation factor Tu (EF-Tu) stacks on the side chain of the esterified Phe of Phe-tRNAPhe. The affinities of eight aminoacyl-tRNAs were differentially destabilized by the introduction of the H66A mutation into Escherichia coli EF-Tu, whereas Ala-tRNAAla and Gly-tRNAGly were unaffected. The H66F and H66W proteins each show a different pattern of binding of 10 different aminoacyl-tRNAs, clearly showing that this position is critical in establishing the specificity of EF-Tu for different esterified amino acids. However, the H66A mutation does not greatly affect the ability of the ternary complex to bind ribosomes, hydrolyze GTP, or form dipeptide, suggesting that this residue does not directly participate in ribosomal decoding. Selective mutation of His-66 may improve the ability of certain unnatural amino acids to be incorporated by the ribosome.
Nucleic Acids Research | 2016
Keren Lasker; Jared M. Schrader; Yifei Men; Tyler Marshik; David L. Dill; Harley H. McAdams; Lucy Shapiro
Caulobacter crescentus is a premier model organism for studying the molecular basis of cellular asymmetry. The Caulobacter community has generated a wealth of high-throughput spatiotemporal databases including data from gene expression profiling experiments (microarrays, RNA-seq, ChIP-seq, ribosome profiling, LC-ms proteomics), gene essentiality studies (Tn-seq), genome wide protein localization studies, and global chromosome methylation analyses (SMRT sequencing). A major challenge involves the integration of these diverse data sets into one comprehensive community resource. To address this need, we have generated CauloBrowser (www.caulobrowser.org), an online resource for Caulobacter studies. This site provides a user-friendly interface for quickly searching genes of interest and downloading genome-wide results. Search results about individual genes are displayed as tables, graphs of time resolved expression profiles, and schematics of protein localization throughout the cell cycle. In addition, the site provides a genome viewer that enables customizable visualization of all published high-throughput genomic data. The depth and diversity of data sets collected by the Caulobacter community makes CauloBrowser a unique and valuable systems biology resource.
Journal of Visualized Experiments | 2015
Jared M. Schrader; Lucy Shapiro
The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.
Biochemistry | 2014
Emine Yikilmaz; Stephen J. Chapman; Jared M. Schrader; Olke C. Uhlenbeck
Nineteen of the highly conserved residues of Escherichia coli (E. coli) Elongation factor Tu (EF-Tu) that form the binding interface with aa-tRNA were mutated to alanine to better understand how modifying the thermodynamic properties of EF-Tu–tRNA interaction can affect the decoding properties of the ribosome. Comparison of ΔΔGo values for binding EF-Tu to aa-tRNA show that the majority of the interface residues stabilize the ternary complex and their thermodynamic contribution can depend on the tRNA species that is used. Experiments with a very tight binding mutation of tRNATyr indicate that interface amino acids distant from the tRNA mutation can contribute to the specificity. For nearly all of the mutations, the values of ΔΔGo were identical to those previously determined at the orthologous positions of Thermus thermophilus (T. thermophilus) EF-Tu indicating that the thermodynamic properties of the interface were conserved between distantly related bacteria. Measurement of the rate of GTP hydrolysis on programmed ribosomes revealed that nearly all of the interface mutations were able to function in ribosomal decoding. The only interface mutation with greatly impaired GTPase activity was R223A which is the only one that also forms a direct contact with the ribosome. Finally, the ability of the EF-Tu interface mutants to destabilize the EF-Tu–aa-tRNA interaction on the ribosome after GTP hydrolysis were evaluated by their ability to suppress the hyperstable T1 tRNATyr variant where EF-Tu release is sufficiently slow to limit the rate of peptide bond formation (kpep) . In general, interface mutations that destabilize EF-Tu binding are also able to stimulate kpep of T1 tRNATyr, suggesting that the thermodynamic properties of the EF-Tu–aa-tRNA interaction on the ribosome are quite similar to those found in the free ternary complex.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Camille Bayas; Jiarui Wang; Marissa K. Lee; Jared M. Schrader; Lucy Shapiro; W. E. Moerner
Significance Regulated gene expression involves accurate subcellular positioning and timing of RNA synthesis, degradation, processing, and translation. RNase E is an endoribonuclease that forms the scaffold of the RNA degradosome in bacteria, responsible for the majority of mRNA turnover and RNA processing. We used 3D superresolution microscopy and single-particle tracking to quantify the spatial distribution and dynamics of RNase E and ribosomes in the asymmetrically dividing bacterium Caulobacter crescentus. Our results show that active transcription and RNA substrate availability facilitate confinement and clustering of both RNase E and ribosomes. RNase E clusters colocalized with the subcellular position of the two Caulobacter rRNA gene chromosomal loci, indicating that RNA processing can be spatially organized in a bacterium according to its transcriptional profile. We report the dynamic spatial organization of Caulobacter crescentus RNase E (RNA degradosome) and ribosomal protein L1 (ribosome) using 3D single-particle tracking and superresolution microscopy. RNase E formed clusters along the central axis of the cell, while weak clusters of ribosomal protein L1 were deployed throughout the cytoplasm. These results contrast with RNase E and ribosome distribution in Escherichia coli, where RNase E colocalizes with the cytoplasmic membrane and ribosomes accumulate in polar nucleoid-free zones. For both RNase E and ribosomes in Caulobacter, we observed a decrease in confinement and clustering upon transcription inhibition and subsequent depletion of nascent RNA, suggesting that RNA substrate availability for processing, degradation, and translation facilitates confinement and clustering. Importantly, RNase E cluster positions correlated with the subcellular location of chromosomal loci of two highly transcribed rRNA genes, suggesting that RNase E’s function in rRNA processing occurs at the site of rRNA synthesis. Thus, components of the RNA degradosome and ribosome assembly are spatiotemporally organized in Caulobacter, with chromosomal readout serving as the template for this organization.