Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jared Rutter is active.

Publication


Featured researches published by Jared Rutter.


Science | 2009

SDH5, a Gene Required for Flavination of Succinate Dehydrogenase, Is Mutated in Paraganglioma

Huai Xiang Hao; Oleh Khalimonchuk; Margit Schraders; Noah Dephoure; Jean-Pierre Bayley; H.P.M. Kunst; Peter Devilee; C.W.R.J. Cremers; Joshua D. Schiffman; Brandon G. Bentz; Steven P. Gygi; Dennis R. Winge; H. Kremer; Jared Rutter

Tapping the Mitochondrial Proteome Mitochondria produce the energy that cells need to survive, function, and divide. A growing list of human disorders has been traced to defects in mitochondrial function. About 300 mammalian mitochondrial proteins are functionally uncharacterized, and Hao et al. (p. 1139, published online 23 July) reasoned that the most highly conserved proteins within this group might provide insights into human disease. A combination of bioinformatics, yeast genetics, biochemistry, and human genetics was used to show that a previously uncharacterized mitochondrial protein (Sdh5) is required for the activity of respiratory complex II. Inactivating mutations in the human gene encoding SDH5 were found in individuals with hereditary paraganglioma, a rare neuroendocrine tumor. Thus, analysis of a mitochondrial protein in yeast has revealed a human tumor susceptibility gene. Analysis of a yeast mitochondrial protein reveals a human tumor susceptibility gene. Mammalian mitochondria contain about 1100 proteins, nearly 300 of which are uncharacterized. Given the well-established role of mitochondrial defects in human disease, functional characterization of these proteins may shed new light on disease mechanisms. Starting with yeast as a model system, we investigated an uncharacterized but highly conserved mitochondrial protein (named here Sdh5). Both yeast and human Sdh5 interact with the catalytic subunit of the succinate dehydrogenase (SDH) complex, a component of both the electron transport chain and the tricarboxylic acid cycle. Sdh5 is required for SDH-dependent respiration and for Sdh1 flavination (incorporation of the flavin adenine dinucleotide cofactor). Germline loss-of-function mutations in the human SDH5 gene, located on chromosome 11q13.1, segregate with disease in a family with hereditary paraganglioma, a neuroendocrine tumor previously linked to mutations in genes encoding SDH subunits. Thus, a mitochondrial proteomics analysis in yeast has led to the discovery of a human tumor susceptibility gene.


Science | 2012

A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans

Daniel K. Bricker; Eric B. Taylor; John C. Schell; Thomas Orsak; Audrey Boutron; Yu Chan Chen; James Cox; Caleb M. Cardon; Jonathan G. Van Vranken; Noah Dephoure; Claire Redin; Sihem Boudina; Steven P. Gygi; Michèle Brivet; Carl S. Thummel; Jared Rutter

Letting Pyruvate In Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96, published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93, published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells. The genes encoding two components of the pyruvate transporter in mitochondria have been identified. Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases.

Kelly J. Beumer; Jonathan K. Trautman; Ana Bozas; Ji-Long Liu; Jared Rutter; Joseph G. Gall; Dana Carroll

We report very high gene targeting frequencies in Drosophila by direct embryo injection of mRNAs encoding specific zinc-finger nucleases (ZFNs). Both local mutagenesis via nonhomologous end joining (NHEJ) and targeted gene replacement via homologous recombination (HR) have been achieved in up to 10% of all targets at a given locus. In embryos that are wild type for DNA repair, the products are dominated by NHEJ mutations. In recipients deficient in the NHEJ component, DNA ligase IV, the majority of products arise by HR with a coinjected donor DNA, with no loss of overall efficiency in target modification. We describe the application of the ZFN injection procedure to mutagenesis by NHEJ of 2 new genes in Drosophila melanogaster: coil and pask. Pairs of novel ZFNs designed for targets within those genes led to the production of null mutations at each locus. The injection procedure is much more rapid than earlier approaches and makes possible the generation and recovery of targeted gene alterations at essentially any locus within 2 fly generations.


Molecular Cell | 2010

A Stress-Responsive System for Mitochondrial Protein Degradation

Jin Mi Heo; Nurit Livnat-Levanon; Eric B. Taylor; Kevin T. Jones; Noah Dephoure; Julia Ring; Jianxin Xie; Jeffrey L. Brodsky; Frank Madeo; Steven P. Gygi; Kaveh Ashrafi; Michael H. Glickman; Jared Rutter

We show that Ydr049 (renamed VCP/Cdc48-associated mitochondrial stress-responsive--Vms1), a member of an unstudied pan-eukaryotic protein family, translocates from the cytosol to mitochondria upon mitochondrial stress. Cells lacking Vms1 show progressive mitochondrial failure, hypersensitivity to oxidative stress, and decreased chronological life span. Both yeast and mammalian Vms1 stably interact with Cdc48/VCP/p97, a component of the ubiquitin/proteasome system with a well-defined role in endoplasmic reticulum-associated protein degradation (ERAD), wherein misfolded ER proteins are degraded in the cytosol. We show that oxidative stress triggers mitochondrial localization of Cdc48 and this is dependent on Vms1. When this system is impaired by mutation of Vms1, ubiquitin-dependent mitochondrial protein degradation, mitochondrial respiratory function, and cell viability are compromised. We demonstrate that Vms1 is a required component of an evolutionarily conserved system for mitochondrial protein degradation, which is necessary to maintain mitochondrial, cellular, and organismal viability.


Mitochondrion | 2010

Succinate dehydrogenase - Assembly, regulation and role in human disease

Jared Rutter; Dennis R. Winge; Joshua D. Schiffman

Succinate dehydrogenase (or Electron Transport Chain Complex II) has been the subject of a focused but significant renaissance. This complex, which has been the least studied of the mitochondrial respiratory complexes has seen renewed interest due to the discovery of its role in human disease. Under this heightened scrutiny, the succinate dehydrogenase complex has proven to be a fascinating machine, whose regulation and assembly requires additional factors that are beginning to be discovered. Mutations in these factors and in the structural subunits of the complex itself cause a variety of human diseases. The mechanisms underlying the pathogenesis of SDH mutations is beginning to be understood.


Molecular Cell | 2014

Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.

Chendong Yang; Bookyung Ko; Christopher T. Hensley; Lei Jiang; Ajla T. Wasti; Jiyeon Kim; Jessica Sudderth; MariaAntonietta Calvaruso; Lloyd Lumata; Matthew A. Mitsche; Jared Rutter; Matthew E. Merritt; Ralph J. DeBerardinis

Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.


Cell Metabolism | 2012

Identification of a protein mediating respiratory supercomplex stability

Yu Chan Chen; Eric B. Taylor; Noah Dephoure; Jin Mi Heo; Aline Tonhato; Ioanna Papandreou; Nandita Nath; Nicolas C. Denko; Steven P. Gygi; Jared Rutter

The complexes of the electron transport chain associate into large macromolecular assemblies, which are believed to facilitate efficient electron flow. We have identified a conserved mitochondrial protein, named respiratory supercomplex factor 1 (Rcf1-Yml030w), that is required for the normal assembly of respiratory supercomplexes. We demonstrate that Rcf1 stably and independently associates with both Complex III and Complex IV of the electron transport chain. Deletion of the RCF1 gene caused impaired respiration, probably as a result of destabilization of respiratory supercomplexes. Consistent with the hypothetical function of these respiratory assemblies, loss of RCF1 caused elevated mitochondrial oxidative stress and damage. Finally, we show that knockdown of HIG2A, a mammalian homolog of RCF1, causes impaired supercomplex formation. We suggest that Rcf1 is a member of an evolutionarily conserved protein family that acts to promote respiratory supercomplex assembly and activity.


Structure | 2002

Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation.

Carlos A. Amezcua; Shannon M. Harper; Jared Rutter; Kevin H. Gardner

PAS domains are sensory modules in signal-transducing proteins that control responses to various environmental stimuli. To examine how those domains can regulate a eukaryotic kinase, we have studied the structure and binding interactions of the N-terminal PAS domain of human PAS kinase using solution NMR methods. While this domain adopts a characteristic PAS fold, two regions are unusually flexible in solution. One of these serves as a portal that allows small organic compounds to enter into the core of the domain, while the other binds and inhibits the kinase domain within the same protein. Structural and functional analyses of point mutants demonstrate that the compound and ligand binding regions are linked, suggesting that the PAS domain serves as a ligand-regulated switch for this eukaryotic signaling system.


Biochemical Society Transactions | 2011

Mitochondrial quality control by the ubiquitin–proteasome system

Eric B. Taylor; Jared Rutter

Mitochondria perform multiple functions critical to the maintenance of cellular homoeostasis and their dysfunction leads to disease. Several lines of evidence suggest the presence of a MAD (mitochondria-associated degradation) pathway that regulates mitochondrial protein quality control. Internal mitochondrial proteins may be retrotranslocated to the OMM (outer mitochondrial membrane), multiple E3 ubiquitin ligases reside at the OMM and inhibition of the proteasome causes accumulation of ubiquitinated proteins at the OMM. Reminiscent of ERAD [ER (endoplasmic reticulum)-associated degradation], Cdc48 (cell division cycle 42)/p97 is recruited to stressed mitochondria, extracts ubiquitinated proteins from the OMM and presents ubiquitinated proteins to the proteasome for degradation. Recent research has provided mechanistic insights into the interaction of the UPS (ubiquitin-proteasome system) with the OMM. In yeast, Vms1 [VCP (valosin-containing protein) (p97)/Cdc48-associated mitochondrial-stress-responsive 1] protein recruits Cdc48/p97 to the OMM. In mammalian systems, the E3 ubiquitin ligase parkin regulates the recruitment of Cdc48/p97 to mitochondria, subsequent mitochondrial protein degradation and mitochondrial autophagy. Disruption of the Vms1 or parkin systems results in the hyper-accumulation of ubiquitinated proteins at mitochondria and subsequent mitochondrial dysfunction. The emerging MAD pathway is important for the maintenance of cellular and therefore organismal viability.


Molecular Cell | 2014

A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth.

John C. Schell; Kristofor A. Olson; Lei Jiang; Amy J. Hawkins; Jonathan G. Van Vranken; Jianxin Xie; Robert A. Egnatchik; Espen G. Earl; Ralph J. DeBerardinis; Jared Rutter

Cancer cells are typically subject to profound metabolic alterations, including the Warburg effect wherein cancer cells oxidize a decreased fraction of the pyruvate generated from glycolysis. We show herein that the mitochondrial pyruvate carrier (MPC), composed of the products of the MPC1 and MPC2 genes, modulates fractional pyruvate oxidation. MPC1 is deleted or underexpressed in multiple cancers and correlates with poor prognosis. Cancer cells re-expressing MPC1 and MPC2 display increased mitochondrial pyruvate oxidation, with no changes in cell growth in adherent culture. MPC re-expression exerted profound effects in anchorage-independent growth conditions, however, including impaired colony formation in soft agar, spheroid formation, and xenograft growth. We also observed a decrease in markers of stemness and traced the growth effects of MPC expression to the stem cell compartment. We propose that reduced MPC activity is an important aspect of cancer metabolism, perhaps through altering the maintenance and fate of stem cells.

Collaboration


Dive into the Jared Rutter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven L. McKnight

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge