Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jared T. Wilcox is active.

Publication


Featured researches published by Jared T. Wilcox.


Experimental Neurology | 2012

Cell-based transplantation strategies to promote plasticity following spinal cord injury

Crystal A. Ruff; Jared T. Wilcox; Michael G. Fehlings

Cell transplantation therapy holds potential for repair and functional plasticity following spinal cord injury (SCI). Stem and progenitor cells are capable of modifying the lesion environment, providing structural support and myelination and increasing neurotrophic factors for neuroprotection and endogenous activation. Through these effects, transplanted cells induce plasticity in the injured spinal cord by promoting axonal elongation and collateral sprouting, remyelination, synapse formation and reduced retrograde axonal degeneration. In light of these beneficial effects, cell transplantation could be combined with other treatment modalities, such as rehabilitation and immune modulation, to provide a synergistic functional benefit. This review will delineate 1) stem/progenitor cell types proposed for cell transplantation in SCI, 2) in vitro evidence of cell-induced mechanisms of plasticity, 3) promotion of functional recovery in animal models of SCI, 4) successful combinatorial strategies using cell transplantation. Current treatment modalities for SCI provide modest efficacy, especially in chronic stages of SCI. Hence, combinatorial stem cell transplantation strategies which could potentially directly address tissue sparing and neuroplasticity in chronic SCI show promise. Rigorous evaluation of combinatorial approaches using stem cell transplantation with appropriate preclinical animal models of SCI is needed to advance therapeutic strategies to the point where clinical trials are appropriate. Given the high patient demand for and clinical trial precedent of cell transplantation therapy, combination stem cell therapies have the promise to provide improved quality of life for individuals, with corresponding socioeconomic benefit.


Stem Cells and Development | 2009

Characterization of canine embryonic stem cell lines derived from different niche microenvironments.

Jared T. Wilcox; Esther Semple; C.J. Gartley; Brigitte A. Brisson; Steven D. Perrault; D.A.F. Villagómez; Chandrakant Tayade; Sandy Becker; Robert Lanza; Dean H. Betts

Embryo-derived stem cells hold enormous potential for producing cell-based transplantation therapies, allowing high-throughput drug screening and delineating early embryonic development. However, potential clinical applications must first be tested for safety and efficacy in preclinical animal models. Due to physiological and genetic parity to humans, the domestic dog is widely used as a clinically relevant animal model for cardiovascular, neurodegenerative, orthopedic, and oncologic diseases. Therefore, we established numerous putative canine embryonic stem cell (cESC) lines by immunodissection of the inner cell mass (ICM), which we termed OVC.ID.1-23, and by explant outgrowths from whole canine blastocysts, named OVC.EX.1-16. All characterized lines were immunopositive for OCT4, SOX2, NANOG, SSEA-3, and SSEA-4; displayed high telomerase and alkaline phosphatase (ALP) activities; and were maintained in this state up to 37 passages ( approximately 160 days). Colonies from OVC.EX lines showed classic domed hESC-like morphology surrounded by a ring of fibroblast-like cells, whereas all OVC.ID lines exhibited a mixed cell colony of tightly packed cESCs surrounded by a GATA6+/CDX2- hypoblast-derived support layer. Spontaneous serum-only differentiation without feeder layers demonstrated a strong lineage selection associated with the colony niche type, and not the isolation method. Upon differentiation, cESC lines formed embryoid bodies (EB) comprised of cells representative of all germinal layers, and differentiated into cell types of each layer. Canine ESC lines such as these have the potential to identify differences between embryonic stem cell line derivations, and to develop or to test cell-based transplantation therapies in the dog before attempting human clinical trials.


Neuroscience Letters | 2012

Spinal cord clinical trials and the role for bioengineering.

Jared T. Wilcox; David W. Cadotte; Michael G. Fehlings

There is considerable need for bringing effective therapies for spinal cord injury (SCI) to the clinic. Excellent medical and surgical management has mitigated poor prognoses after SCI; however, few advances have been made to return lost function. Bioengineering approaches have shown great promise in preclinical rodent models, yet there remains a large translational gap to carry these forward in human trials. Herein, we provide a framework of human clinical trials, an overview of past trials for SCI, as well as bioengineered approaches that include: directly applied pharmacologics, cellular transplantation, biomaterials and functional neurorehabilitation. Success of novel therapies will require the correct application of comprehensive preclinical studies with well-designed and expertly conducted human clinical trials. While biologics and bioengineered strategies are widely considered to represent the high potential benefits for those who have sustained a spinal injury, few such therapies have been thoroughly tested with appreciable efficacy for use in human SCI. With these considerations, we propose that bioengineered strategies are poised to enter clinical trials.


PLOS ONE | 2011

Synaptically-competent neurons derived from canine embryonic stem cells by lineage selection with EGF and Noggin.

Jared T. Wilcox; Jonathan K. Y. Lai; Esther Semple; Brigitte A. Brisson; C.J. Gartley; John N. Armstrong; Dean H. Betts

Pluripotent stem cell lines have been generated in several domestic animal species; however, these lines traditionally show poor self-renewal and differentiation. Using canine embryonic stem cell (cESC) lines previously shown to have sufficient self-renewal capacity and potency, we generated and compared canine neural stem cell (cNSC) lines derived by lineage selection with epidermal growth factor (EGF) or Noggin along the neural default differentiation pathway, or by directed differentiation with retinoic acid (RA)-induced floating sphere assay. Lineage selection produced large populations of SOX2+ neural stem/progenitor cell populations and neuronal derivatives while directed differentiation produced few and improper neuronal derivatives. Primary canine neural lines were generated from fetal tissue and used as a positive control for differentiation and electrophysiology. Differentiation of EGF- and Noggin-directed cNSC lines in N2B27 with low-dose growth factors (BDNF/NT-3 or PDGFαα) produced phenotypes equivalent to primary canine neural cells including 3CB2+ radial progenitors, MOSP+ glia restricted precursors, VIM+/GFAP+ astrocytes, and TUBB3+/MAP2+/NFH+/SYN+ neurons. Conversely, induction with RA and neuronal differentiation produced inadequate putative neurons for further study, even though appropriate neuronal gene expression profiles were observed by RT-PCR (including Nestin, TUBB3, PSD95, STX1A, SYNPR, MAP2). Co-culture of cESC-derived neurons with primary canine fetal cells on canine astrocytes was used to test functional maturity of putative neurons. Canine ESC-derived neurons received functional GABAA- and AMPA-receptor mediated synaptic input, but only when co-cultured with primary neurons. This study presents established neural stem/progenitor cell populations and functional neural derivatives in the dog, providing the proof-of-concept required to translate stem cell transplantation strategies into a clinically relevant animal model.


Stem Cells Translational Medicine | 2014

Neural precursor cell transplantation enhances functional recovery and reduces astrogliosis in bilateral compressive/contusive cervical spinal cord injury.

Jared T. Wilcox; Kajana Satkunendrarajah; Jeffrey A. Zuccato; Farshad Nassiri; Michael G. Fehlings

Spinal cord injury has a significant societal and personal impact. Although the majority of injuries involve the cervical spinal cord, few studies of cell transplantation have used clinically relevant models of cervical spinal cord injury, limiting translation into clinical trials. Given this knowledge gap, we sought to examine the effects of neural stem/precursor cell (NPC) transplants in a rodent model of bilateral cervical contusion‐compression spinal cord injury. Bilateral C6‐level clip contusion‐compression injuries were performed in rats, which were then blindly randomized at 2 weeks after injury into groups receiving adult brain‐derived NPCs, vehicle, or sham operation. Long‐term survival of NPCs was evident at 10 weeks after transplant. Cell grafts were localized rostrocaudally surrounding the lesion, throughout white and gray matter. Graft‐derived cells were found within regions of gliotic scar and motor tracts and deposited myelin around endogenous axons. The majority of NPCs developed an oligodendroglial phenotype with greater neuronal profiles in rostral grafts. Following NPC transplantation, white matter was significantly increased compared with control. Astrogliosis and glial scar deposition, measured by GFAP‐positive and chondroitin sulfate proteoglycan‐positive volume, was significantly reduced. Forelimb grip strength, fine motor control during locomotion, and axonal conduction (by in vivo electrophysiology) was greater in cell‐treated animals compared with vehicle controls. Transplantation of NPCs in the bilaterally injured cervical spinal cord results in significantly improved spinal cord tissue and forelimb function, warranting further study in preclinical cervical models to improve this treatment paradigm for clinical translation.


Journal of Neurotrauma | 2016

A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent

Gray Moonen; Kajana Satkunendrarajah; Jared T. Wilcox; Anna Badner; Andrea J. Mothe; Warren D. Foltz; Michael G. Fehlings; Charles H. Tator

Traumatic injury to the lumbar spinal cord results in complex central and peripheral nervous tissue damage causing significant neurobehavioral deficits and personal/social adversity. Although lumbar cord injuries are common in humans, there are few clinically relevant models of lumbar spinal cord injury (SCI). This article describes a novel lumbar SCI model in the rat. The effects of moderate (20 g), moderate-to-severe (26 g) and severe (35 g, and 56 g) clip impact-compression injuries at the lumbar spinal cord level L1-L2 (vertebral level T11-T12) were assessed using several neurobehavioral, neuroanatomical, and electrophysiological outcome measures. Lesions were generated after meticulous anatomical landmarking using microCT, followed by laminectomy and extradural inclusion of central and radicular elements to generate a traumatic SCI. Clinically relevant outcomes, such as MR and ultrasound imaging, were paired with robust morphometry. Analysis of the lesional tissue demonstrated that pronounced tissue loss and cavitation occur throughout the acute to chronic phases of injury. Behavioral testing revealed significant deficits in locomotion, with no evidence of hindlimb weight-bearing or hindlimb-forelimb coordination in any injured group. Evaluation of sensory outcomes revealed highly pathological alterations including mechanical allodynia and thermal hyperalgesia indicated by increasing avoidance responses and decreasing latency in the tail-flick test. Deficits in spinal tracts were confirmed by electrophysiology showing increased latency and decreased amplitude of both sensory and motor evoked potentials (SEP/MEP), and increased plantar H-reflex indicating an increase in motor neuron excitability. This is a comprehensive lumbar SCI model and should be useful for evaluation of translationally oriented pre-clinical therapies.


Neurobiology of Disease | 2017

Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function

Jared T. Wilcox; Kajana Satkunendrarajah; Yasmin Nasirzadeh; Alex M. Laliberte; Alyssa Lip; David W. Cadotte; Warren D. Foltz; Michael G. Fehlings

The majority of spinal cord injuries (SCI) occur at the cervical level, which results in significant impairment. Neurologic level and severity of injury are primary endpoints in clinical trials; however, how level-specific damages relate to behavioural performance in cervical injury is incompletely understood. We hypothesized that ascending level of injury leads to worsening forelimb performance, and correlates with loss of neural tissue and muscle-specific neuron pools. A direct comparison of multiple models was made with injury realized at the C5, C6, C7 and T7 vertebral levels using clip compression with sham-operated controls. Animals were assessed for 10weeks post-injury with numerous (40) outcome measures, including: classic behavioural tests, CatWalk, non-invasive MRI, electrophysiology, histologic lesion morphometry, neuron counts, and motor compartment quantification, and multivariate statistics on the total dataset. Histologic staining and T1-weighted MR imaging revealed similar structural changes and distinct tissue loss with cystic cavitation across all injuries. Forelimb tests, including grip strength, F-WARP motor scale, Inclined Plane, and forelimb ladder walk, exhibited stratification between all groups and marked impairment with C5 and C6 injuries. Classic hindlimb tests including BBB, hindlimb ladder walk, bladder recovery, and mortality were not different between cervical and thoracic injuries. CatWalk multivariate gait analysis showed reciprocal and progressive changes forelimb and hindlimb function with ascending level of injury. Electrophysiology revealed poor forelimb axonal conduction in cervical C5 and C6 groups alone. The cervical enlargement (C5-T2) showed progressive ventral horn atrophy and loss of specific motor neuron populations with ascending injury. Multivariate statistics revealed a robust dataset, rank-order contribution of outcomes, and allowed prediction of injury level with single-level discrimination using forelimb performance and neuron counts. Level-dependent models were generated using clip-compression SCI, with marked and reliable differences in forelimb performance and specific neuron pool loss.


Journal of Neurosurgery | 2017

Management of multiple meningiomas

Georgios Tsermoulas; Mazda K. Turel; Jared T. Wilcox; D.B. Shultz; Richard I. Farb; Gelareh Zadeh; Mark Bernstein

OBJECTIVE Multiple meningiomas account for 1%-10% of meningiomas. This study describes epidemiological aspects of the disease and its management, which is more challenging than for single tumors. METHODS A consecutive series of adult patients with ≥ 2 spatially separated meningiomas was reviewed. Patients with neurofibromatosis Type 2 were excluded. The authors collected clinical, imaging, histological, and treatment data to obtain information on epidemiology, management options, and outcomes of active treatment and surveillance. RESULTS A total of 133 consecutive patients were included over 25 years, with a total of 395 synchronous and 53 metachronous meningiomas, and a median of 2 tumors per patient. One hundred six patients had sporadic disease, 26 had radiation-induced disease, and 1 had familial meningiomatosis. At presentation, half of the patients were asymptomatic. In terms of their maximum cross-sectional diameter, the tumors were small (≤ 2 cm) in 67% and large (> 4 cm) in 11% of the meningiomas. Fifty-four patients had upfront treatment, and 31 had delayed treatment after an observation period (mean 4 years). One in 4 patients had ≥ 2 meningiomas treated. Overall, 64% of patients had treatment for 142 tumors-67 with surgery and 18 with radiotherapy alone. The mean follow-up was 7 years, with 13% of treated patients receiving salvage therapy. Approximately 1 in 4 patients who underwent surgery had ≥ 1 WHO Grade II or III meningioma. Meningiomas of different histological subtypes and grades in the same patient were not uncommon. CONCLUSIONS Multiple meningiomas are often asymptomatic, probably because the majority are small and a significant proportion are induced by radiation. Approximately two-thirds of patients with multiple meningiomas require therapy, but only one-third of all meningiomas need active treatment. The authors recommend surveillance for stable and asymptomatic meningiomas and therapy for those that are symptomatic or growing.


Neurobiology of Disease | 2017

Corrigendum to “Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function” Neurobiology of Disease 105 (2017) 194–212

Jared T. Wilcox; Kajana Satkunendrarajah; Yasmin Nasirzadeh; Alex M. Laliberte; Alyssa Lip; David W. Cadotte; Warren D. Foltz; Michael G. Fehlings

Corrigendum to “Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function” Neurobiology of Disease 105 (2017) 194–212 Jared T. Wilcox, Kajana Satkunendrarajah, Yasmin Nasirzadeh, Alex M. Laliberte, Alyssa Lip, David W. Cadotte, Warren D. Foltz, Michael G. Fehlingsa,b, a Division of Genetics and Development, Toronto Western Research Institute, University Health Network, ON M5T 2S8, Canada b Institute of Medical Science and Spinal Program, University of Toronto, ON M5S 1A8, Canada c STTARR Innovation Centre, Department of Radiation Oncology, Princess Margaret Hospital, Toronto, ON M5G 1L7, Canada


Journal of Neurosurgery | 2011

Spinal cord injury and pain.

Michael G. Fehlings; Jared T. Wilcox

Collaboration


Dive into the Jared T. Wilcox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.J. Gartley

Ontario Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean H. Betts

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Esther Semple

Ontario Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Warren D. Foltz

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alyssa Lip

University Health Network

View shared research outputs
Researchain Logo
Decentralizing Knowledge