Jari Lyytikäinen
Tampere University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jari Lyytikäinen.
Optics Express | 2008
Jussi Rautiainen; Jari Lyytikäinen; Alexei Sirbu; Alexandru Mereuta; Andrei Caliman; E. Kapon; Oleg G. Okhotnikov
We report a wafer fused high power optically pumped semiconductor disk laser incorporating InP-based active medium fused to a GaAs/AlGaAs distributed Bragg reflector. A record value of over 2.6 W of output power in a spectral range around 1.57 microm was demonstrated, revealing the essential advantage of the wafer fusing technique over monolithically-grown all-InP-based structures. The presented approach allows for integration of lattice-mismatched compounds, quantum-well and quantum-dot based media. This would provide convenient means for extending the wavelength range of semiconductor disk lasers.
Optics Express | 2009
Jari Lyytikäinen; Jussi Rautiainen; Lauri Toikkanen; Alexei Sirbu; Alexandru Mereuta; Andrei Caliman; E. Kapon; Oleg G. Okhotnikov
We report a wafer-fused high power optically-pumped semiconductor disk laser operating at 1.3 µm. An InP-based active medium was fused with a GaAs/AlGaAs distributed Bragg reflector, resulting in an integrated monolithic gain mirror. Over 2.7 W of output power, obtained at temperature of 15 °C, represents the best achievement reported to date for this type of lasers. The results reveal an essential advantage of the wafer fusing technique over both monolithically grown AlGaInAs/GaInAsP- and GaInNAs-based structures.
Optics Letters | 2010
A. Chamorovskiy; Jussi Rautiainen; Jari Lyytikäinen; Sanna Ranta; M. Tavast; Alexei Sirbu; E. Kapon; Oleg G. Okhotnikov
A 1.6µm mode-locked Raman fiber laser pumped by a 1480nm semiconductor disk laser is demonstrated. Watt-level core pumping of the single-mode fiber Raman lasers with low-noise disk lasers together with semiconductor saturable absorber mirror mode locking represents a highly practical solution for short-pulse operation.
Optics Letters | 2013
Sanna Ranta; Antti Härkönen; Tomi Leinonen; Lasse Orsila; Jari Lyytikäinen; Günter Steinmeyer; Mircea Guina
A picosecond GaInP/AlGaInP/GaAs vertical external-cavity surface-emitting laser (VECSEL) at 675 nm is reported. The laser is mode-locked with a GaInP/AlGaInP/GaAs saturable absorber mirror and emitted ~5.1 ps pulses at a 973 MHz repetition rate and an average power of 45 mW. To our knowledge, this is the first demonstration of a passively mode-locked VECSEL emitting fundamental laser radiation at the visible part of the spectrum.
IEEE Journal of Quantum Electronics | 2002
N. Xiang; Mircea Guina; A. Vainionpaa; Jari Lyytikäinen; Soile Suomalainen; M Saarinen; Oleg G. Okhotnikov; Timo Sajavaara; J. Keinonen
Broadband low-loss semiconductor saturable absorber mirrors (SESAMs) in the 1.55-/spl mu/m wavelength range were monolithically grown by solid source molecular beam epitaxy using a Burstein-Moss blue-shifted Ga/sub 0.47/In/sub 0.53/As-InP distributed Bragg reflector. Absorbers with fast and slow temporal responses were used to start up and to stabilize a stretched pulse mode-locked fiber laser. Reliable operation at a fundamental repetition rate was obtained without multiple pulse break-up with pulse energy of over 250 pJ.
Optics Express | 2012
Antti Rantamäki; Jussi Rautiainen; Jari Lyytikäinen; Alexei Sirbu; Alexandru Mereuta; E. Kapon; Oleg G. Okhotnikov
We demonstrate an optically pumped semiconductor disk laser operating at 1580 nm with 4.6 W of output power, which represents the highest output power reported from this type of laser. 1 W of output power at 785 nm with nearly diffraction-limited beam has been achieved from this laser through intracavity frequency doubling, which offers an attractive alternative to Ti:sapphire lasers and laser diodes in a number of applications, e.g., in spectroscopy, atomic cooling and biophotonics.
Advances in Optical Technologies | 2011
Alexei Sirbu; Nicolas Volet; Alexandru Mereuta; Jari Lyytikäinen; Jussi Rautiainen; Oleg G. Okhotnikov; Jarosław Walczak; M. Wasiak; Tomasz Czyszanowski; Andrei Caliman; Q. Zhu; V. Iakovlev; E. Kapon
1300-nm, 1550-nm, and 1480-nm wavelength, optically pumped VECSELs based on wafer-fused InAlGaAs/InP-AlGaAs/GaAs gain mirrors with intracavity diamond heat spreaders are described. These devices demonstrate very low thermal impedance of 4 K/W. Maximum CW output of devices with 5 groups of quantum wells shows CW output power of 2.7 W from 180 μm apertures in both the 1300-nm and the 1550-nm bands. Devices with 3 groups of quantum wells emitting at 1480 nm and with the same aperture size show CW output of 4.8 W. These VECSELs emit a high-quality beam with 𝑀 2 beam parameter below 1.6 allowing reaching a coupling efficiency as high as 70% into a single-mode fiber. Maximum value of output power of 6.6 W was reached for 1300 nm wavelength devices with 290 μm aperture size. Based on these VECSELs, second harmonic emission at 650 nm wavelength with a record output of 3 W and Raman fiber lasers with 0.5 W emission at 1600 nm have been demonstrated.
IEEE Photonics Technology Letters | 2011
Jari Lyytikäinen; Jussi Rautiainen; Alexei Sirbu; Vladimir Iakovlev; Antti Laakso; Sanna Ranta; Miki Tavast; E. Kapon; Oleg G. Okhotnikov
An output power up to 5 W at 1.48-μm wavelength is achieved from an optically pumped semiconductor disk laser. An active region composed of an AlGaInAs/InP heterostructure grown on an InP substrate was wafer fused with an AlGaAs/GaAs Bragg reflector grown on a GaAs substrate. An intracavity diamond heatspreader bonded to the gain structure surface provides efficient heat removal from the active element. The results further validate that the wafer fusion technique offers a flexible platform for high-power disk lasers in a wide wavelength range.
IEEE Journal of Quantum Electronics | 2003
A. Isomaki; A. Vainionpaa; Jari Lyytikäinen; Oleg G. Okhotnikov
We report on a monolithic Gires-Tournois semiconductor interferometer used for both suppression of low-intensity spontaneous noise in a high-power fiber amplifier and to generate a tunable delay. The potential of the noise suppression technique was demonstrated using a two-stage amplifier system. Gain improvement by a factor of five illustrates the capability of semiconductor gates to greatly enhance energy extraction from optical amplifiers. We demonstrate also that controllable saturable absorption in an optically pumped multiple-quantum-well semiconductor reflector provides promising means for rapidly changing the group delay of the reflector and represents a new form of dynamic dispersion compensator.
IEEE Photonics Technology Letters | 2014
Lauri Toikkanen; Antti Härkönen; Jari Lyytikäinen; Tomi Leinonen; Antti Laakso; A. Tukiainen; Jukka Viheriälä; Mariia Bister; Mircea Guina
Room temperature lasing operation at 599 nm for a AlGaInP/AlInP/GaAs edge-emitting laser structure is reported. The structure was grown on GaAs substrate and pumped optically with a 532 nm Q-switched laser. The lasing threshold for a 2 mm long and 25 μm wide ridge waveguide structure was 30 mW of average pump power. The orange output beam had an optical spectral width of 1.7 nm.